Antarctic Meteorite NEWSLETTER A periodical issued by the Antarctic Meteorite Working Group to inform scientists of the basic characteristics of specimens recovered in the Antarctic. Volume 9, Number 3 August, 1986 Supported by the National Science Foundation, Division of Polar Programs, and compiled at Code SN2. Johnson Space Center, NASA, Houston, Texas 77058 # !!!!!!! SAMPLE REQUEST DEADLINE: OCTOBER 20, 1986 (SEE PAGE 2) !!!!!!!! | SAMPLE-REQUEST GUIDELINES | 2 | |---|----| | EDITOR'S OVERVIEW | 3 | | NEW METEORITES | | | Table 1: Alphabetical List of New 1983-1985 Specimens | 6 | | Table 2: New 1983-1985 Specimens Listed By Type | 9 | | Table 3: Tentative Pairings for New Specimens | 11 | | Petrographic Descriptions | 12 | | METEORITE POWDERS | | | Table 4: Meteorite Powders by Eugene Jarosewich | 24 | (NASA-TM-89635) ANTARCTIC METEORITE NEWSLETTER, VOLUME 9, NUMBER 3 Monthly Reports (NASA) 70 p Avail: NTIS N87-70848 Unclas 00/90 0098696 #### SAMPLE-REQUEST GUIDELINES All sample requests should be made in writing to Secretary, MWG SN2/Planetary Materials Branch NASA/Johnson Space Center Houston, TX 77058 USA. Questions pertaining to sample requests can be directed in writing to the above address or can be directed by telephone to (713) 483-3274. Requests for samples are welcomed from research scientists of all countries, regardless of their current state of funding for meteorite studies. All sample requests will be reviewed by the Meteorite Working Group (MWG), a peer-review committee that guides the collection, curation, allocation, and distribution of the U. S. Antarctic meteorites. Issuance of samples does not imply a commitment by any agency to fund the proposed research. Requests for financial support must be submitted separately to the appropriate funding agencies. As a matter of policy, U. S. Antarctic meteorites are the property of the National Science Foundation and all allocations are subject to recall. Each request should refer to meteorite samples by their respective identification numbers and should provide detailed scientific justification for the proposed research. Specific requirements for samples, such as sizes or weights, particular locations (if applicable) within individual specimens, or special handling or shipping procedures should be explained in each request. All necessary information should probably be condensable into a one-or two-page letter, although informative attachments (reprints of publications that explain rationale, flow diagrams for analyses, etc.) are welcome. Requests that are received by the MWG Secretary before October 20, 1986 will be reviewed at the MWG meeting of October 23-25, 1986 to be held in Washington, DC. Requests that are received after the October 20 deadline may possibly be delayed for review until the MWG meets again in the spring of 1987. PLEASE SUBMIT YOUR REQUESTS ON TIME. Samples can be requested from any meteorite that has been made available through anouncement in any issue of the <u>Antarctic Meteorite Newsletter</u> (beginning with $\underline{1}(1)$ in June, 1978). Many of the meteorites have also been described in the following catalogs: - Marvin, U. B. and B. Mason (eds.) (1984) Field and Laboratory Investigations of Meteorites from Victoria Land, Antarctica, <u>Smithsonian Contr. Earth Sci. No. 26</u>, Smithsonian Institution Press, 134 pp. - Marvin, U. B. and B. Mason (eds.) (1982) Catalog of Meteorites from Victoria Land, Antarctica, 1978-1980, <u>Smithsonian Contr. Earth Sci. No. 24</u>, Smithsonian Institution Press, 97 pp. - Marvin, U. B. and B. Mason (eds.) (1980) Catalog of Antarctic Meteorites, 1977-1978, <u>Smithsonian Contr. Earth Sci. No. 23</u>, Smithsonian Institution Press, 50 pp. #### EDITOR'S OVERVIEW #### James L. Gooding #### AN UNUSUALLY LARGE CHONDRITE Because of its size, Antarctic meteorite specimen, LEW85320 (H5 chondrite; p. 22-23), offers an opportunity for studies of meteorite properties that might vary with depth in a large specimen. In particular, an obvious possible use of this specimen is documented sampling as a function of depth for studies of cosmogenic nuclides. Curation and processing of LEW85320 at JSC has been deliberately limited to drying and storage under dynamic flow of high-purity nitrogen gas, with only conservative sampling. Except for removal of surficial salt (and soil?) samples and extraction of a single small chip for classification work, the specimen has been maintained intact. It has been suggested that LEW85320 should be used as a museum display specimen. Alternatively, it has been suggested that the specimen be systematically dissected in support of various scientific studies. Researchers interested in LEW85320 should formulate their suggestions and plans for use of this specimen and submit them in writing to the Secretary/Meteorite Working Group at the address given on page 2. Remember that letters must be received by October 20, 1986 in order to be assured of review by MWG at the October 23-25, 1986 meeting. # DON'T FORGET TO READ ISSUES 9(2) AND 9(4) ! Issue 9(2) was published in June 1986 and contained descriptions of several newly classified meteorite specimens that should be of great interest to researchers. Before finalizing plans for sample requests, readers should remember to review the contents of issue 9(2). Issue $\underline{9}(4)$ (September 1986), which was co-mailed with the current issue, consists of a comprehensive listing of all specimens from the U. S. Antarctic meteorite collections that have been classified to date. The first version of that compilation was published in issue $\underline{8}(2)$ (August 1985). The comprehensive listing in issue $\underline{9}(4)$ is intended to be a stand-alone reference document that will serve as a quick guide to basic physical and classification data for the collections. We intend to update and distribute the list periodically as a separate issue of the <u>Antarctic Meteorite Newsletter</u>. # NEW METEORITES FROM 1983-1985 COLLECTIONS Pages 6-23 contain preliminary descriptions and classifications of meteorites that were completed since publication of issue 9(2) (June 1986). Most large (> 150-g) specimens (regardless of petrologic type) and all "pebble"- sized (< 150-g) specimens of special petrologic type (carbonaceous chondrite, unequilibrated ordinary chondrite, achondrite, etc.) are represented by separate descriptions. However, some specimens of non-special petrologic type (i.e., equilibrated ordinary chondrite) are listed only as single-line entries in Table 1. For convenience, new specimens are also recast by petrologic type in Table 2. Each "macroscopic" description summarizes features that were visible to the eye (with, at most, the aid of a binocular stereomicroscope) at the time meteorite was first examined. Macroscopic descriptions of stony meteorites were performed at NASA/JSC. Each "thin section" description represents features that were found in a survey-level examination of a polished section that was prepared from a small (usually exterior) chip of the Classification is based on microscopic petrography reconnaissance-level electron-probe microanalyses. For each stony meteorite, the sample number assigned to the preliminary examination section (...,l or ...,3, etc.) is included as an aid to workers who may later wish to intercompare samples from different locations in the meteorite. Exceptions to that rule occur for descriptions of several specimens that are thought to be members of a single fall. In those cases, a single microscopic description was based on several different thin sections. Meteorite descriptions contained in this issue were contributed by the following individuals: Mrs. Carol Schwarz, Ms. Roberta Score, and Mr. Rene' Martinez Planetary Materials Laboratory (NASA/Johnson Space Center) Northrop Services, Inc. Houston, Texas Dr. Brian H. Mason Department of Mineral Sciences U. S. National Museum of Natural History Smithsonian Institution Washington, DC Dr. James L. Gooding Planetary Materials Branch NASA/Johnson Space Center Houston, Texas. # TENTATIVE PAIRINGS FOR NEW SPECIMENS Table 3 summarizes possible pairings of new specimens with each other and with previously classified specimens, based on descriptive data provided in this newsletter issue. Readers who desire a more comprehensive review of meteorite pairings in the U. S. Antarctic collection should refer to the compilation provided by Dr. E. R. D. Scott, as published in issue $\underline{9}(2)$ (June 1986). # METEORITE POWDERS PREPARED BY EUGENE JAROSEWICH It is well known that, because many meteorites are compositionally heterogeneous at the millimeter to centimeter scale, representative sampling can be a significant problem in studies of the bulk compositions of meteorites. Especially for chemical and elemental measurements, it is advantageous to have all analyses performed on equivalent splits from a representative, homogenized powder so that meaningful intercomparison of data can be achieved. Thanks to the generous cooperation and hard work of Eugene Jarosewich (Department of Mineral Sciences, U. S. National Museum of Natural History, Smithsonian Institution, Washington, DC), homogeneous-powder samples are available for many of the more interesting specimens from the U. S. Antarctic collection. A complete list of those powders is given in Table 4. For each specimen, the weight of the sample that was committed to homogenization is listed. The amount of material that remains from each sample varies from one specimen to the next because some material has been consumed in analyses by various investigators. However, these powders probably comprise the most representative bulk samples of the respective meteorites that can be obtained, especially for analyses that require only a few tens to a few hundreds of milligrams of material. For each meteorite that contained a significant amount of
metal, quantitative separations were made to produce metal and silicate (+ sulfide) portions by crushing and sieving. Large grains of metal were concentrated into the ">100-mesh" fraction. The "<100-mesh" fraction was predominantly silicate (+ sulfide and minor metal) material. For each meteorite that did not contain appreciable metal, though, no such splitting was attempted (e.g., eucrites, C2 chondrites). Further details of sample preparation can be obtained directly from Eugene Jarosewich (details are provided along with allocated samples). However, requests for samples should be made through the Secretary/MWG at the address given on page 2 of this newsletter. Table 1. List of Newly Classified Antarctic Meteorites ** | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | % Fa | % Fs | |---|---|--|--|---|---|--| | ALH 83046
ALH 83047
ALH 83049
ALH 83050
ALH 83051
ALH 83052
ALH 83053 | 20.0
2.3
6.1
9.7
16.5
52.8 | H-5 CHONDRITE H-5 CHONDRITE L-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE H-5 CHONDRITE | A/B
B/C
B/C
B
A/B
A/B
C | A
A
B
B
A
B | 17
19
24
18
17
17
23
17 | 15
16
20
16
15
15
20 | | EET 83363
EET 83364 | | L-6 CHONDRITE
L-6 CHONDRITE | B
A/B | A/B
A | 24
24 | 20
20 | | ALH 84073 ALH 84074 ALH 84075 ALH 84076 ALH 84077 ALH 84079 ALH 84080 ALH 84081 ALH 84083 ALH 84083 ALH 84084 ALH 84085 ALH 84087 ALH 84090 ALH 84091 ALH 84091 ALH 84091 ALH 84095 ALH 84097 ALH 84097 ALH 84097 ALH 84097 ALH 84107 ALH 84111 ALH 84116 ALH 84117 ALH 84111 ALH 84116 ALH 84111 | 757.5
788.6
368.7
276.4
283.3 | H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-8 CHONDRITE H-9 CHONDRITE H-9 CHONDRITE L-9 CHONDRITE L-9 CHONDRITE L-9 CHONDRITE L-10 CHONDRITE L-10 CHONDRITE L-11 CHONDRITE L-12 CHONDRITE L-13 CHONDRITE L-14 CHONDRITE L-15 CHONDRITE L-15 CHONDRITE L-16 CHONDRITE L-17 CHONDRITE L-18 CHONDRITE L-19 CHON | BACBBBACBBBAABBCBABCAABBBBABBBABCBABCCBABBCCBABBCCCBBBABBA | A B B A A A A A B B B A A A A A B B B A A A A A B B B B A A A A B B B B A A A A B B B B A A A A B B B B B A A A A B B B B B A A A A B B B B B A A A A B B B B B A A A A B B B B B A A A A B B B B B A A A A B B B B B A A A A B B B B B A A A A B B B B B A A A A B B B B B A A A A B B A B A A A A B B B B B B A A A A B B A B A B A A A A B B B B B A A A A B B A B A A A A B B B B B A A A A B B A B A A A A B B B B B A A A A B B A B A A A A B B B B B A A A A B B A B A A A A B B B B B A A A A B B A B A A A A B B B B B A A A A B B A B A A A A B B B B B B A A A A B B A B A A A A B B B B B B A A A A B B A B A A A A B B B B B B A A A A B B A B A B A B B A B B A B A B B A B B A B B A B B A B | 17
17
18
18
18
24
29
19
18
17
25-29
18
18
25
19
23
17
17
24
30
24
17
17
18
29
18
28
17
17
18
29
18
21
18
21
21
21
21
21
21
21
21
21
21
21
21
21 | 15
15
16
16
16
20
23
17
16
15
17
20
16
16
22
17
20
21
21
21
21
21
21
21
21
21
21
21
21
21 | Table 1. (cont.) | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | % Fa % | Fs | |---|---|--|---|--|---|--| | ALH 84135
ALH 84137
ALH 84138
ALH 84139
ALH 84147
ALH 84151
ALH 84157
ALH 84167
ALH 84167
ALH 84170
ALH 84177
ALH 84178
ALH 84184
ALH 84185
ALH 84185
ALH 84206
ALH 84216
ALH 84227
ALH 84230
ALH 84230
ALH 84250
ALH 84250
ALH 84250
ALH 84250
ALH 84252
ALH 84254
ALH 84254
ALH 84254
ALH 84254
ALH 84254
ALH 84255
ALH 84262
ALH 84264 | 31.3
83.5
145.4
20.2
157.1
54.2
112.4
242.9
88.6
150.7
14.2
39.2
7.3
0.4
42.1
4.8
3.1
14.0
5.4
15.1
5.5
12.1
2.4
32.3
18.9
10.0
3.1
2.0
11.3
15.3
137.6 | H-5 CHONDRITE UREILITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE L-7 CHONDRITE H-5 H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE L-6 CHONDRITE | B/C C C C C C B B B B B B C C A A/B C B B B B B B C C A | A A C A A A A A A B A A B A B A B A A A A | 18
0-5
18
19
19
17
18
17
17
17
30
0.6-28
24
18
18
18
18
18
18
18
18
18
18
18
18
18 | 16
4
16
17
17
15
15
15
15
15
16
16
16
0.7-3
0.8-7
24
0.7-6
16
16
14-19
16
15
0.3-4
24
21 | | EET 84301
EET 84302
EET 84303
EET
84304
EET 84305
EET 84306
EET 84307
EET 84308 | 75.1
59.6
57.5
152.2
9.8
3.5
5.1
9.3 | L-6 CHONDRITE ACHONDRITE H-5 CHONDRITE L-6 CHONDRITE LL-6 CHONDRITE H-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE | B
B/C
C
B
A/B
C
C
B | B
B
A
A
B
A/B
A | 24
5
18
24
27
19
23
24 | 20
8
16
20
22
16
20
20 | | ALH 85001
ALH 85002
ALH 85005
ALH 85006
ALH 85007
ALH 85008
ALH 85013
ALH 85014
ALH 85015 | 212.3
437.7
18.9
49.0
82.0
32.1
46.6
130.4
75.0
3.2 | EUCRITE CARBONACEOUS C4 CARBONACEOUS C2 CARBONACEOUS C3V CARBONACEOUS C2 CARBONACEOUS C2 CARBONACEOUS C2 CARBONACEOUS C2 CARBONACEOUS C2 L-6 CHONDRITE DIOGENITE | A/B
A
A
B
B
A
A | A/B
A
A
B
A/B
B
A/B
A | 30
0.5-39
0.3-43
0.3-30
0.3-45
0.4-59
0.5-36
25
39 | 32
26
.9-2.2
.9-4.9
.9-2.5
.8-1.6 | Table 1. (cont.) | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | % Fa % | Fs | |--|---|---|---|--|--|--| | DOM 85500 | 59.8 | H-5 CHONDRITE | В | A/B | 18 | 16 | | GRO 85200
GRO 85202 | 3821.6
27.2 | H-5 CHONDRITE
CARBONACEOUS C2 | B/C
A/B | A
C | 18
.8-1.2 | 16 | | LEW 85300
LEW 85302
LEW 85303
LEW 85305
LEW 85309
LEW 85311
LEW 85312
LEW 85313
LEW 85317
LEW 85320 | 210.3
114.5
408.0
40.8
6.5
54.1
199.5
31.7
191.2
8.7 | EUCRITE EUCRITE EUCRITE EUCRITE CARBONACEOUS C2 CARBONACEOUS C2 CARBONACEOUS C2 CARBONACEOUS C2 CARBONACEOUS C2 DIOGENITE L-4 CHONDRITE H-5 CHONDRITE | A/B
A/B
A
A
A
B
B
B
B
B
B | A
A/B
A
A
B/C
B/C
B/C
B | 0.2-33
0.2-41
0.4-36
0.2-45
25
19 | 32-63
24-59
30-62
31-57
.7-5.5
.9-1.5
.9-1.1
.7-1.8
28-35
18-22
16 | Table 2. Newly Classified Specimens Listed By Type ** # Achondrites | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | % Fa | % Fs | |---|---|---|--|--|--|--| | EET 84302 | 59.6 | ACHONDRITE | B/C | В | 5 | 8 | | ALH 85015
LEW 85313 | 3.2
191.2 | DIOGENITE
DIOGENITE | A
B | A
B | 39 | 25
28-35 | | ALH 85001
LEW 85300
LEW 85302
LEW 85303
LEW 85305 | 212.3
210.3
114.5
408.0
40.8 | EUCRITE
EUCRITE
EUCRITE
EUCRITE
EUCRITE | A/B
A/B
A/B
A/B | A/B
A
A/B
A
A | | 32
32-63
24-59
30-62
31-57 | | ALH 84136 | 83.5 | UREILITE | В | A/B | 0-5 | 4 | | | | Carbonaceous | Chondrites | | | | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | % Fa | % Fs | | ALH 84191
ALH 85005
ALH 85007
ALH 85008
ALH 85009
ALH 85013
GRO 85202
LEW 85306
LEW 85309
LEW 85311
LEW 85312 | 14.0
18.9
82.0
32.1
46.6
130.4
27.2
6.5
54.1
199.5
31.7 | CARBONACEOUS C2 | A
B
B
A
A/B
A/B
B
B | B
A
B
A/B
C
A
B/C
B/C | 0.48
0.5-39
0.3-30
0.3-45
0.4-59
0.5-36
.8-1.2
0.2-33
0.2-41
0.4-36 | .9-2.2
.9-2.5
.8-1.6
.7-5.5
.9-1.5 | | ALH 85006 | 49.0 | CARBONACEOUS C3V | A | A | 0.3-43 | .9-4.9 | | ALH 84096
ALH 85002 | 293.6
437.7 | CARBONACEOUS C4
CARBONACEOUS C4 | A/B
A | A
A | 30
30 | 22
26 | | | | Chondrites | s - Type 3 | | | | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | % Fa | % Fs | | ALH 84086
ALH 84126 | 234.0
41.2 | LL-3 CHONDRITE
LL-3 CHONDRITE | A/B
B | A
B | 25-29
7-31 | 17-26
3-24 | Table 2 (cont.). # Chondrites - Type 4 | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | % Fa | % Fs | |------------------------|---------------|--------------------------------|------------|------------|----------|-------------| | ALH 84084
ALH 84230 | 331.8
2.4 | H-4 CHONDRITE
H-4 CHONDRITE | B
B | A
A | 18
18 | 16
14-19 | | LEW 85317 | 8.7 | L-4 CHONDRITE | A/B | Α | 25 | 18-22 | #### E Chondrites | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | % Fa % Fs | |--|----------------------------|--|--------------------|------------------|----------------------------------| | ALH 84170 | 39.2 | E-3 CHONDRITE | В | Α | 0.6-28 0.9-17 | | ALH 84188
ALH 84206
ALH 84250
ALH 84254 | 3.1
15.1
10.0
2.0 | E-4 CHONDRITE
E-4 CHONDRITE
E-4 CHONDRITE
E-4 CHONDRITE | C
A/B
B
B | B
A
A
A | 0.7-3
0.7-6
0.5-4
0.3-4 | # ** NOTES TO TABLES 1 and 2: # "Weathering" categories: - A: Minor rustiness; rust haloes on metal particles and rust stains along fractures are minor. - B: Moderate rustiness; large rust haloes occur on metal particles and rust stains on internal fractures are extensive. - C: Severe rustiness; metal particles have been mostly stained by rust throughout. # "Fracturing" categories: - A: Minor cracks; few or no cracks are conspicuous to the naked eye and no cracks penetrate the entire specimen. - B: Moderate cracks; several cracks extend across exterior surfaces and the specimen can be readily broken along the cracks. - C: Severe cracks; specimen readily crumbles along cracks that are both extensive and abundant. # TABLE 3. List of Newly Announced Meteorites that may be Paired. Ureilite: ALH84136 with ALH82106, 82130. Carbonaceous C2: ALH84191 with ALH84033. ALH85005, 85007, 85008, 85009, 85013. LEW85306, 85309, 85311, 85313. E-4 Chondrite: ALH84188, 84206, 84250, 84254 with ALHA81189, 82132. Sample No.: ALH84086 Location: Allan Hills Weight (g): 234.0 Field No.: 1569 Dimensions (cm): $9 \times 5 \times 3.5$ Meteorite Type: LL3 Chondrite Macroscopic Description: Roberta Score Fusion crust covers most of this chondrite. Abundant inclusions, both chondrules and clasts, are contained in the medium gray-colored matrix. One light-colored clast visible on the exterior is 0.7 x 0.9 cm in dimension. Oxidation is minor. Thin Section (,3) Description: Brian Mason The section shows a close-packed aggregate of chondrules, chondrule fragments, and irregular inclusions up to 3 mm across, with a few grains of nickel-iron and sulfide and hardly any matrix. A considerable variety of chondrules is present, the commonest being porphyritic olivine and granular olivine with or without polysynthetically twinned clinopyroxene. Some chondrules have intergranular, transparent pale brown glass; in others the glass is turbid and partly devitrified. Microprobe analyses show a moderate range in the composition of olivine (Fa 25-29), and a wider range in pyroxene (Fs 17-26). This range in composition, and the presence of glass and twinned clinopyroxene, indicates type 3, and the olivine composition is characteristic of the LL group; the meteorite is therefore classified as an LL3 chondrite. Sample No.: ALH84096 Location: Allan Hills Weight (q): 293.6 Field No.: 2515 Dimensions (cm): $10 \times 5 \times 4$ Meteorite Type: C4 Chondrite <u>Macroscopic Description</u>: <u>Carol Schwarz</u> Thin fusion crust covers 70% of this specimen. Areas devoid of fusion crust are mostly weathered and have a rough texture. Fresher areas are gray in color with some darker gray clasts, white clasts, and metal. The interior is medium gray and has several darker gray clasts. Chipping exposed a metal-rich area of several mm². Thin Section (,4) Description: Brian Mason The section has a brecciated appearance, with angular areas up to 5 mm across differing in color from pale gray to dark brown; however, the grain size is fairly uniform throughout. The meteorite appears to consist largely of fine-grained olivine (grain size 0.01-0.1 mm) with a small amount (2-3%) of nickel-iron and sulfide. Chondritic structure is barely perceptible. Microprobe analyses gave the following compositions: olivine, Fa 30; pyroxene, Fs 22; plagioclase, An 10. The meteorite is tentatively classified as a C4 chondrite. Sample No.: ALH84126 Location: Allan Hills Weight (g): 41.2 Field No.: 2006 Dimensions (cm): 3.5 x 3.5 x 2 Meteorite Type: LL3 Chondrite Macroscopic Description: Roberta Score This fragment retains four small patches of fusion crust. The overall exterior color is brown. Numerous chondrule/inclusions show relief on the surface, giving the exterior a rough texture. Weathering has extended deep into the interior. The less weathered material is medium gray with abundant rounded and irregular shaped inclusions. Thin Section (,2) Description: Brian Mason The section shows a close-packed aggregate of chondrules, chondrule fragments, and angular clasts, ranging up to 3 mm
across. Many of the chondrules have dark rims. A variety of chondrule types is present, including porphyritic olivine, granular olivine and olivine-pyroxene, and radiating pyroxene. A few grains of nickel-iron and troilite are present. Olivine and pyroxene have variable compositions. Olivine composition ranges Fa 7-31 with a mean of Fa 16 (% mean deviation of FeO is 46). Pyroxene composition ranges Fs 3-24, with a mean of Fs 9 (% mean deviation of FeO is 45). The texture and variable mineral compositions are those of type 3, and the amount of metal suggests LL group, hence the meteorite is tentatively classified as an LL3 chondrite. Sample No.: ALH84100 Location: Allan Hills Weight (g): 110.3 Field No.: 2800 Dimensions (cm): $7.5 \times 3.5 \times 3$ Meteorite Type: H5 Chondrite with clast Macroscopic Description: Roberta Score Weathered fusion crust covers 60% of this fragment. One striking feature of this stone is the heavily weathered fracture surface which contains a semi-rounded clast, 1.5 x 1.3 x 0.2 cm in dimension. This clast is white to light gray in color and coarse-grained. The interior is moderately weathered (heavy in areas), medium-gray in color, and contains numerous chondrules. Thin Section (,4; ,5) Description: Brian Mason Portions of the clast in this H5 chondrite are present in two thin sections (84100,4 from 84100,1 and 84100,5 from 84100,2). The clast consists of granular olivine and pyroxene, with a little plagioclase and trace amounts of nickel-iron. Compositions of olivine (Fa 18) and pyroxene (Fs 16) are similar to those in the chondritic part of the meteorite; in addition, one grain of pigeonite (Wo 9 Fs 15) was analysed. Two grains of plagioclase (An 38, 50) were analysed. The olivine is turbid and shows undulose extinction (possible shock effects). Sample No.: ALH84136 Location: Allan Hills Weight (g): 83.5 Field No.: 1527 Dimensions (cm): $6.5 \times 3 \times 3.5$ Meteorite Type: Ureilite Macroscopic Description: Rene' Martinez Flaky black fusion crust entirely covers this specimen. The interior is dark gray and granular with crystals as large as 2 mm in a red-brown matrix. Stone is very coherent. Thin Section (,3) Description: Brian Mason The section shows an aggregate of anhedral to subhedral grains (0.6-2.4 mm across) of olivine and pyroxene, with about 10% of opaque material, in part disseminated throughout and in part concentrated along grain boundaries. Olivine grains are gray from submicroscopic opaque inclusions, whereas pyroxene grains are clear but are extremely fractured. Well-preserved fusion crust is present on one edge. Microprobe analyses give the following compositions: olivine, somewhat variable, Fa 0-5, mean Fa 3; pyroxene, essentially uniform, Wo 5 Fs 4; one grain of endiopside, Wo 34 Fs 2.5, was analysed. The mineralogy and texture are typical of a ureilite; this specimen is so similar in all respects to ALH82106 and 82130 that it can be confidently paired with them. Sample No.: ALH84170 Location: Allan Hills Weight (g): 39.2 Field No.: 2535 Dimensions (cm): 3.5 x 3 x 2 Meteorite Type: E3 Chondrite Macroscopic Description: Roberta Score Fifty percent of this fragment is covered by extremely weathered brown fusion crust. The exposed interior has a black matrix with numerous white to gray rounded and irregular-shaped inclusions. ALH84170 is a coherent specimen. Thin Section (,2) Description: Brian Mason Chondrules are abundant, ranging from 0.3-2.0 mm across; they consist of radiating or granular pyroxene, some with olivine. The matrix is made up of chondrule fragments and mineral grains, with a considerable amount of opaque materials (nickel-iron and sulfides). Weathering is extensive, with brown limonitic staining throughout the section. Microprobe analyses show many grains of olivine and pyroxene close to Mg2SiO4 and MgSiO3 in composition, but some contain a considerable amount of iron. The nickel-iron contains 2.2-3.0% Si. The meteorite is an enstatite chondrite, and the unequilibrated compositions of the olivine and pyroxene suggest the E3 classification. Sample No.: ALH84191 Location: Allan Hills Weight (q): 14.0 Field No.: 1451 Dimensions (cm): 3 x 2.5 x 1 Meteorite Type: C2 Chondrite Macroscopic Description: Roberta Score A fractured, blistered, black fusion crust entirely covers ALH84191. Chipping revealed an interior that is black with many rounded and irregular shaped inclusions. Oxidation is minor. Thin Section (,2) Description: Brian Mason The section shows scattered chondrules (up to 0.6 mm across), irregular aggregates, and mineral grains in a black matrix which contains dispersed metal and sulfide grains. There is little or no evidence of terrestrial weathering. Microprobe analyses show olivine as nearly pure Mg_2SiO_4 (FeO 0.4-1.3%) and pyroxene with somewhat greater variation (FeO 0.6-4.5%; CaO 0.4-2.2%). The meteorite is a C2 chondrite, and closely resembles ALH84033 and other meteorites paired with it. ALH84188, 84206, 84250, 84254 Sample Nos.: Location: Allan Hills Field Nos.: 2837; 2686; 2813; 1544 Weight (g): 3.1; 15.1; 10.0; 2.0 Dimensions (cm): 1x2x0.7; 2x2x1; 2x2x1; 1.5x1.5x0.4 Meteorite Type: E4 Chondrite weathered. Macroscopic Description: Roberta Score All four specimens retain some fusion crust (84254 is totally covered with fusion crust). The interiors of 84206 and 84250 are black with inclusions as large as 2 mm in diameter, while the interiors of 84188 and 84254 are black and have a massive texture. Metal is present in 84206 and 84254. 84188 is extensively weathered; the others are minimally to moderately Thin Section (ALH84188,2) Description: Brian Mason Chondrules are relatively abundant, but are small, usually about 0.6 mm in diameter; they consist of fine-grained to coarsely granular pyroxene. The matrix consists largely of chondrule fragments and pyroxene grains, with a moderate amount of nickel-iron and sulfides. The meteorite is considerably weathered, with brown limonitic staining throughout the section. Microprobe analyses show that most of the pyroxene is almost pure MgSiO₃, but a few grains show FeO up to 2.7%. The nickel-iron contains 2.5% Si. The meteorite is an enstatite chondrite, and since some of the pyroxene is polysynthetically twinned clinoenstatite, it is classed E4. It closely resembles ALH81189, 82132, 84206, 84250, and 84254, and the possibility of pairing should be considered. Sample No.: ALH85001 Location: Allan Hills Weight (g): 212.3 Field No.: 2255 Dimensions (cm): 7 x 6 x 3.5 Meteorite Type: Eucrite Macroscopic Description: Roberta Score ALH85001 appears to be an oriented stone covered by a shiny black fusion crust with thick flow lines. Areas devoid of fusion crust have weathered to a brownish-gray color. A discontinuous weathering rind, as thick as 4 mm, was exposed when the stone was chipped. The interior is made up of abundant laths of chalky-looking plagioclase in a light gray matrix. The way this stone has weathered is more typical of the Elephant Moraine eucrites than those found in the Allan Hills. Thin Section (,4) Description: Brian Mason The section shows angular fragments of orthopyroxene and plagioclase, up to 2.4 mm across, in a comminuted groundmass of these minerals. Some of the pyroxene has lamellae and blebs of exsolved augite. One large gabbroic clast, 6 mm across with individual grains up to 3 mm, is present. Trace amounts of nickel-iron and troilite are present in the groundmass. Microprobe analyses show that pyroxene compositions are remarkable uniform, Wo 2 Fs 32, with a few more calcic grains, up to Wo 8 (possibly incipient augite exsolution). Plagioclase composition is also fairly uniform, An 92-94. The meteorite is a monomict eucrite with unusually magnesian pyroxene, similar to that in the Binda eucrite. Sample No.: ALH85002 Location: Allan Hills Weight (g): 437.7 Field No.: 2219 Dimensions (cm): 8 x 7 x 5 Meteorite Type: C4 Chondrite Macroscopic Description: Rene' Martinez Approximately 80% of the exterior is covered with reddish-brown, polygonally fractured fusion crust. The interior is light gray with dark rounded inclusions as large as 1 mm and white irregular-shaped inclusions as large as 3 mm in longest dimension. Thin Section (,4) Description: Brian Mason The section consists largely of finely granular olivine (grains ranging up to 0.1 mm), with a little pyroxene, plagioclase, and opaques (largely magnetite). A few chondrules, made up of coarser-grained olivine, are present. The section is rimmed with fusion crust along one edge. Microprobe analyses give the following compositions: olivine, Fa 29; pyroxene, Fs 26; plagioclase, An 54-59. The meteorite is a C4 chondrite and closely resembles ALH82135; the possibility of pairing should be considered. Sample No.: ALH85005, 85007, 85008, Location: Allan Hills 85009, 85013 Field Nos.: 2268; 2209; 2284; 9: 82.0: 32.1: 2240; 2257 Weight (g): 18.9; 82.0; 32.1; 46.6; 130.4 Dimensions (cm): 4x2x3; 5x4x4; 3x3x3.5; 4.5x3x3; 6x5x3.5 Meteorite Type: C2 Chondrite Macroscopic Description: Rene' Martinez ALH85013 is completely covered with fusion crust; ALH85005 and 85009 retain some weathered fusion crust. The others have no fusion crust and have a knobby appearance with inclusions protruding from the surface. The interiors appear relatively unweathered, black, fine-grained, and contain irregular white inclusions that are <0.5 mm in longest dimension. Thin Section (ALH85005,4) Description: Brian Mason The section consists largely of black opaque matrix, through which are scattered small mineral grains (up to 0.2 mm) and sparse chondrules and chondrule fragments. The chondrules and most of the mineral grains consist of olivine, usually close to Mg₂SiO₄ in composition but with some more iron-rich. Pyroxene is less common, and is close to MgSiO₃ in composition. A few grains of calcite were noted. The meteorite is a C2 chondrite; ALH85007, 85008, 85009, and 85013 are very similar and the possibility of pairing should be considered.
Sample No.: ALH85006 Location: Allan Hills Weight (a): 49.0 Field No.: 2660 Weight (g): 49.0 Dimensions (cm): 4 x 3 x 3 Dimensions (cm): 4 x 3 x 3 Meteorite Type: C3V Chondrite <u>Macroscopic Description</u>: <u>Rene' Martinez</u> Fusion crust is present on only one surface of this coherent stone. The interior is made up of chondrules, up to 2 mm in diameter, and irregular white inclusions, up to 3 mm in longest dimension. Thin Section (,5) Description: Brian Mason The section shows a variety of chondrules (up to 2.5 mm across), chondrule fragments, and irregular clasts in a dark brown to black matrix. Fine-grained opaques are dispersed throughout the matrix and rim some of the chondrules. The matrix consists largely of fine-grained iron-rich (Fa 45-47) olivine. Olivine in the chondrules and mineral fragments is usually near Mg_SiO₄ in composition, but more iron-rich grains are also present. Pyroxene is much less abundant than olivine, and is close to MgSiO₃ in composition. The meteorite is a C3 chondrite of the Vigarano subtype. Sample No.: ALH85015 Location: Allan Hills Field No.: 2281 Weight (g): 3.2 Dimensions (cm): 1 x 1 x 1 Meteorite Type: Diogenite Macroscopic Description: Roberta Score Fifty percent of ALH85015 is covered with black fusion crust that is shiny in some areas and dull in other areas. Part of the area devoid of fusion crust is highly_polished. A weathering rind extends 2 mm into the interior of the stone. The interior is medium gray in color with white and dark colored clasts. Thin Section (,2) Description: Brian Mason The section consists almost entirely of orthopyroxene clasts, up to 3 mm across, in a groundmass of comminuted orthopyroxene, with accessory plagioclase and opaques, and traces of olivine. The pyroxene is fairly uniform in composition, Fs 25, with CaO 0.8-1.5%, MnO 0.45-0.67%, Al₂O₃ 0.32-0.66%, TiO₂ 0.05-0.17%. Plagioclase composition is An 84-95. One grain of olivine, Fa 39, was analysed. The meteorite is a diogenite. Sample No.: EET84302 Location: Elephant Moraine Field No.: 2195 Weight (g): 59.6 Dimensions (cm): 4 x 3 x 2.5 cm Meteorite Type: Achondrite Macroscopic Description: Roberta Score The exterior of this stone is mostly covered with thin fusion crust. Medium-grained pyroxene, plagioclase and some scattered metal comprise the heavily oxidized interior of EET84302. Thin Section (,3) Description: Brian Mason The section shows an anhedral granular aggregate (grain size 0.1-0.4 mm), consisting largely of olivine and orthopyroxene, with minor amounts of plagioclase, diopside, nickel-iron, and troilité. Weathering is extensive, with limonitic staining throughout the section. Microprobe analyses gave the following compositions: olivine, Fa 5; orthopyroxene, Wo 2 Fs 8; diopside, Wo 42 Fs 3; plagioclase, An 23. Texturally this meteorite is an achondrite. However, it resembles a silicate inclusion from an iron meteorite; inclusions with similar texture and mineral compositions have been described from several iron meteorites. Sample No.: GRO85202 Location: Grosvenor Mountains Weight (g): 27.2 Field No.: 2053 Dimensions (cm): 4 x 3.5 x 3.5 Meteorite Type: C2 Chondrite Macroscopic Description: Rene' Martinez Thin fractured fusion crust covers two sides of this carbonaceous chondrite. Fusion crust appeared to be the only thing holding the sample together as it was highly fractured and disintegrated when the stone was chipped. The interior is fine-grained with no inclusions visible. Minute evaporite deposit lines some of the interior fractures. Thin Section (,4) Description: Brian Mason The section shows a dark brown to black matrix with numerous mineral grains and aggregates and rare small chondrules. Most of the mineral grains and aggregates consist of an isotropic to weakly birefringent serpentine-like mineral. A few grains of olivine near Mg₂SiO₄ in composition were analysed; some grains of calcite were noted. The meteorite is a C2 chondrite. Sample No.: LEW85300, 85302, 85303 Location: Lewis Cliff Weight (g): 210.3; 114.5; 408.0 Field Nos.: 2474; 2422; 2488 Dimensions (cm): 7x6.5x3.5; 5.5x5x3; 8.5x6x5.5 Meteorite Type: Eucrite Macroscopic Description: Roberta Score Thin, shiny fusion crust with flow marks coats most of the top of LEW85300. The bottom surface has some fusion crust but most of this face is a The bottom surface has some fusion crust but most of this face is a fracture surface which appears to have been moderately polished. Fusion crust appears as dull patches on 85302 and 85303. Several large semi-rounded polymineralic clasts (as large as 2 x 2 cm in dimension) have sharply defined edges and are set in a black matrix that is made up of minute inclusions. Cleaving the stones in half revealed an interior that is lighter in color than the exterior. Several different sharply defined clasts, including white, fine-grained clasts and black aphanitic clasts, were exposed. One large interior area shows extensive oxidation. # Thin Section (LEW85300,12; ,13; ,14) Description: James L. Gooding and Brian Mason - ,12: A large (6 mm apparent maximum dimension) light-colored clast is enclosed by finer-grained dark matrix. Clast is composed of subhedral clinopyroxene and plagioclase (typical grain size is a few tenths mm) in a groundmass of granular pyroxene. Both clinopyroxene and plagioclase are cloudy and show crenulated and undulatory extinction under crossed polars. Some clinopyroxene crystals show very fine herringbone texture (probably exsolution lamellae). Ilmenite (?) is abundant in the clast and occurs as irregular grains of $\sim 0.01-0.2$ mm size. Matrix surrounding clast is a porous, clastic aggregate of pyroxene and plagioclase mineral fragments with characteristic grain sizes of $\sim 0.1-0.2$ mm, but with increasingly finer grains between the large grains. Other optical properties of pyroxene and plagioclase are similar to those described for the clast. - ,13: Nearly all of exposed area is subophitic basalt that is comparable in grain size to the clast in ,12, but with much better preserved igneous texture. Clinopyroxene has pronounced herringbone texture (more abundant than in ,12) and ilmenite (?) is an accessory phase. - ,14: At least two large clasts (\sim 4-5 mm) of subophitic basalt (with ilmenite (?)) float in a finer-grained clastic matrix, as in ,12. At least two irregular grains of Ni-Fe metal (one \sim 0.015 mm, the other \sim 0.12 mm) occur, with the larger one being in the matrix and the smaller one in a clast. The most interesting feature of this section is a dark clast (\sim 2-3 mm size) that resembles a fragment of carbonaceous chondrite (possibly C3). Most of this clast consists of an opaque matrix of low reflectivity (resembles reflectivity of magnetite) with a floating framework of cloudy, irregular, polymineralic clasts and isolated single-crystal mineral fragments. Some of the clasts are nearly spherical but resemble "inclusions" more than "chondrules"; olivine might exist in some of them. Both the border of this clast and objects within it are defined by haloes of dispersed, very fine-grained sulfides. One small grain of possible Ni-Fe metal was observed. Microprobe analyses of the LEW85300,14 section (by B. Mason) show pyroxene compositions clustering around Wo 3 Fs 60 and ranging to Wo 43 Fs 26, with the mean of 15 analyses Wo 12 Fs 52; two grains with composition Wo 3 Fs 33 were found. Plagioclase ranges in composition An 84-93 with a mean of An 89. The dark clast is a fragment of a C3 carbonaceous chondrite, consisting largely of fine-grained olivine, ranging in composition Fa 1-44; one grain of clinoenstatite (Fs 5) and one of spinel (FeO 0.8%) were analysed. The meteorite is a eucrite with a C3 clast. Sample No.: LEW85305 Location: Lewis Cliff Weight (g): 40.8Dimensions (cm): $3 \times 3 \times 1.5$ Meteorite Type: Eucrite Macroscopic Description: Roberta Score LEW85305 has a retangular shape and is completely covered with shiny fusion crust. Flow marks are apparent in the fusion crust. The interior has a granular texture, plagioclase is evenly disseminated throughout the brownish matrix. Thin Section (,4) Description: Brian Mason The section shows a granular aggregate of pale brown pyroxene and colorless pyroxene, with accessory opaques; a small amount of an SiO₂ polymorph, probably tridymite, is present. The meteorite is unbrecciated, but the pyroxene grains (and to a lesser extent the plagioclase) are considerably granulated. Microprobe analyses show pyroxene compositions ranging almost continuously from Wo 6 Fs 57 to Wo 37 Fs 31, with fairly uniform En content. Plagioclase composition is An 84-88. The meteorite is an eucrite; it resembles Ibitira in texture and mineral compositions. Sample No.: LEW85306, 85309, Location: Lewis Cliff 85311, 85312 Field Nos.: 2001; 2047; Weight (g): 6.5; 54.1; 199.5; 31.7 3103; 3108 Dimensions (cm): 2.5x2.5x1.5; 6x3.5x3; 0x5x5 and 5x2x3; 4.5x3x3 Meteorite Type: C2 Chondrite Macroscopic Description: Rene' Martinez Frothy black fusion crust appears as patches on these stones. The interiors of these fragments have abundant light-colored clasts/chondrules that are set in a black fine-grained matrix. Thin evaporite deposit is present on 85309. Some brownish-red oxidation was noted. Thin Section (LEW85306,3) Description: Brian Mason The section shows numerous mineral grains and aggregates and a few small (maximum diameter 0.6 mm) chondrules in a brown to black matrix. Most of the mineral grains are olivine, usually near ${\rm Mg}_2{\rm SiO}_4$ in composition, but some are more iron-rich. Pyroxene is less abundant, and is near ${\rm MgSiO}_3$ in composition. The meteorite is a C2 chondrite. LEW85309, 85311, and 85312 are very similar to LEW85306 in texture and mineral compositions, and the possibility of pairing should be considered. Sample No.: LEW85313 Location: Lewis Cliff Weight (g): 191.2 Field No.: 2498 Dimensions (cm): 8 x 5.5 x 4.5 Meteorite Type: Diogenite Macroscopic Description:
Roberta Score Dull fusion crust covers most of LEW85313 except where large pieces of stone have been plucked out. This feature is abundant and makes this meteorite resemble a piece of Swiss cheese. A brownish-gray weathering rind extends from less than 1 mm to greater than 1 cm into the interior. The massive gray matrix contains both rounded and irregular inclusions that range in color from white to black. Some oxidation haloes are obvious. Thin Section (.5) Description: Brian Mason The section shows orthopyroxene clasts, up to 4 mm across, in a matrix consisting largely of comminuted pyroxene with a small amount of plagio-clase. The orthopyroxene clasts show a minor amount of augite exsolution, both blebby and lamellar. Most of the pyroxene has uniform composition, Fs 29, but a few more iron-rich grains were analysed; minor consitituents are CaO 0.53-2.7%, MnO 0.64-0.80%, Al₂O₃ 0.24-0.91%, TiO₂ 0.16-0.31%. One grain of diopside, Wo 44 Fs 12, was analysed. Plagio-clase composition is An 88-91. Accessory amounts of an SiO₂ polymorph, probably tridymite, were identified. The meteorite is a diogentte. Sample No.: LEW85320 Location: Lewis Cliff Weight (g): ~110224 Field No.: 3164 Dimensions (cm): 61 x 48 x 27 Meteorite Type: H5 Chondrite Macroscopic Description: Roberta Score Dull thin black fusion crust with abundant oxidation haloes covers this entire oriented specimen. Shallow regmaglypts are present on each surface except for the bottom. Some regmaglypts contained Antarctic soil. This was collected and given split number 2. LEW85320 is moderately fractured and many of these fractures are lined with crusty and powdery evaporite deposit. Seven hundred milligrams was scraped from the surface and given split number 3. A chip for classification purposes was taken from an inconspicuous area and yielded a highly weathered sample. This most likely is not representative of the weathering or condition of the interior of the entire stone. Thin Section (.4) Description: James L. Gooding and Brian Mason This section, which represents the outer 1.5 cm of the specimen, displays ordinary chondritic texture with brecciation. The ferromagnesian chondrule population includes all of the common textural types and most chondrules are readily distinguished from the matrix. However, chondrule pyroxenes are not dominantly monoclinic and chondrule mesostases are mostly cryptocrystalline and birefringent. In addition, there were few, if any, signs of primitive rims on chondrules and the chondrite matrix was mostly a translucent to transparent, granular assemblage of olivine and pyroxene. Brecciation in this particular sample is most conspicuously displayed as a light/dark contrast between the outer (toward fusion crust) and inner halves of the section. The dark area appears to be enriched in fine-grained matrix (possibly including an enrichment in sulfides) relative to the light area. Although the section is stained with Fe-oxide weathering products of Antarctic origin, the light/dark contrast is probably a feature of pre-terrestrial origin. A preliminary modal analysis (230 points) of the total section gave 85 vol. % silicates, 11% Ni-Fe metal, and 4% sulfides. Electron microprobe analyses (by B. Mason) showed nearly homogeneous olivine (Fa 19) and pyroxene (Fs 16). On the basis of texture and composition, the specimen is classified as an H5 chondrite. TABLE 4. Homogenized Powders of Antarctic Meteorites a) Original weight of the sample in gramsb) Remaining powder after distribution (as of August 1986) | | | | | -,, | | | | |----------|--------------|------------------|-------------|------------|--------------|------------------|--------| | | Meteorite | Amount | Type # |] | Meteorite | Amount | Type # | | a)
b) | ALHA76004,10 | 2.015
0.162 | LL3 | a) /
b) | ALHA77260,17 | 3.100
0.504 | L3 * | | a)
b) | ALHA77003,20 | 4.700
0.987 | C30 * | a) /
b) | ALHA77270,18 | 20.060
11.988 | L6 | | a)
b) | ALHA77005,38 | 2.310
0.158 | Sh * | a) /
b) | ALHA77271,20 | 20.230
12.000 | Н6 | | a)
b) | ALHA77011,11 | 3.360
0.577 | L3 * | a) /
b) | ALHA77278,23 | 5.152
1.047 | LL3 * | | a)
b) | ALHA77015,17 | 3.110
0.280 | L3 * | a) /
b) | ALHA77284,12 | 21.130
13.263 | L6 | | a)
b) | | 20.190
11.763 | L6 | a) /
b) | ALHA77294,26 | 20.040
12.531 | Н5 | | a)
b) | ALHA77167,19 | 3.100
0.519 | L3 * | a) /
b) | ALHA77296,12 | 20.850
13.750 | L6 | | a)
b) | ALHA77214,18 | 10.700
4.508 | L3 * | a) /
b) | ALHA77297,23 | 20.200
12.994 | L6 | | a)
b) | ALHA77216 | 19.770
10.845 | L3 \$ | a) /
b) | ALHA77299,17 | 5.122
1.340 | H3 * | | a)
b) | ALHA77219,27 | 2.000
0.110 | Me | a) /
b) | ALHA77304,23 | 3.520
0.785 | L4 * | | a)
b) | ALHA77231,25 | 20.080
11.910 | L6 | a) /
b) | ALHA77307,55 | 3.513
1.420 | C3 | | a)
b) | ALHA77249,16 | 3.000
0.225 | L3 * | a) /
b) | | 20.060
12.741 | L6 | | a)
b) | ALHA77256,33 | 2.210
0.362 | Di * | a) /
b) | ALHA78106,23 | 20.150
13.177 | L6 | | a)
b) | ALHA77256,96 | 20.560
20.403 | Di | a) /
b) | ALHA80102,68 | 4.350
2.072 | Eu | | a)
b) | ALHA77257,44 | 2.210
0.224 | Ur * | a) /
b) | ALHA81001,12 | 2.001
1.140 | Eu | Table 4 (continued). | | Meteorite | Amount | Type # | | Meteorite | Amount | Type # | |----------|--------------|------------------|-----------------|----------|--------------|------------------|--------| | a)
b) | ALHA81006,22 | 4.010
1.645 | Eu | a)
b) | EETA79004,76 | 4.090
1.605 | Eu | | a)
b) | ALHA81007,09 | 2.002
1.348 | Eu | a)
b) | EETA79005,69 | 4.075
1.661 | Eu | | a)
b) | ALHA81009,27 | 4.059
1.609 | Eu | a)
b) | EETA79011,33 | 2.099
1.169 | Eu | | a)
b) | ALHA81010,18 | 4.040
1.915 | Eu | a)
b) | EET 82600,13 | 4.092
1.929 | Но | | a)
b) | ALHA81011 | 4.195
1.860 | Eu \$ | a)
b) | EET 83213,38 | 20.640
20.508 | L3 | | a)
b) | ALHA81027,17 | 10.260
8.003 | L6 | a)
b) | EET 83232,05 | 10.030
9.773 | Eu | | a)
b) | ALH 82101,16 | 2.530
0.372 | C30 | a)
b) | PCA 82502,32 | 4.128
1.747 | Eu | | a)
b) | ALH 83100,74 | 20.227
17.924 | C2 | a)
b) | PCA 82506,07 | 20.096
17.501 | Ur | | a)
b) | ALH 83102,45 | 20.011
19.785 | C2 | a)
b) | PCA 82507,05 | 20.200
18.067 | LL6 | | a)
b) | | 8.400
7.591 | Au | a)
b) | RKPA80256,07 | 3.010
1.153 | L3 | | a)
b) | EETA79001 | 15.236
5.888 | Sh \$
lith A | a)
b) | TIL 82402,05 | 20.300
18.319 | LL6 | | a)
b) | | 9.437
3.554 | Sh \$
lith B | a)
b) | | 2.000
1.196 | Eu | Eugene Jarosewich Smithsonian Institution All meteorites were prepared in a agate mortar, except for those marked with asterisk "*" which were prepared in a tungsten carbide mortar. [#] Au = aubrite, Di = diogenite, Eu = eucrite, Ho = Howardite, Sh = shergottite, Ur = ureilite; others are chondrites ^{\$} ALHA77216 is a pool of samples ,7 ,10 ,26 and ,32. ALHA81011 is a pool of samples ,28 ,30 and ,31. EETA79001 lith A is a pool of samples ,23 ,24 and ,35. EETA79001 lith B is a pool of samples ,37 and ,46. | • | | |---|--| # Antarctic Meteorite NEWSLETTER A periodical issued by the Antarctic Meteorite Working Group to inform scientists of the basic characteristics of specimens recovered in the Antarctic. Volume 9, Number 4 September, 1986 Supported by the National Science Foundation, Division of Polar Programs, and compiled at Code SN2, Johnson Space Center, NASA, Houston, Texas 77058 # INDEX OF CLASSIFIED METEORITES from the 1976 - 1985 Antarctic Collections (as of September, 1986) #### EDITOR'S OVERVIEW #### James L. Gooding As the number of collected and classified Antarctic meteorites continues to grow, published descriptions of the collection rapidly become obsolete. The Antarctic Meteorite Newsletter (AMN) provides regular listings of newly classified meteorites. In addition, the Smithsonian Institution, through special issues of Smithsonian Contributions to the Earth Sciences, provides more formal summaries of the U. S. Antarctic meteorite expeditions and specimens, along with brief reviews of scientific results. However, there has remained a need for a single, compact reference index to the accumulated classification and description data. The staff of AMN first produced such an index as Tables 2 and 3 in AMN, $\underline{8}(2)$ (August 1985). The current issue of AMN is devoted to an updated version of that index and was compiled by Roberta Score, Claire Dardano, and Becky Holley. The following pages provide two different types of comprehensive listings that, taken together, represent the state of the collection as of August, 1986. The formats of Tables 1 and 2 are basically those that have been used in previous AMN issues. However, as an additional feature, Table 1 includes references to the original published classification/description of each specimen. Each "Weight" entry refers to the original weight of the recovered specimen. In most cases, the available mass of the remaining specimen is less than the original weight as a consequence of consumption of material for research. In the cases of the 1977 and 1978 collections, which resulted from joint expeditions by workers from the USA and Japan, specimens were equally divided for research programs in the USA and Japan. Consequently, the available mass of the remaining specimen in the USA collection is at least a factor of two less than the original weight listed in Table 1. "Weathering" and "Fracturing" categories, based on qualitative observations made during initial processing of each specimen
at Johnson Space Center, are defined as follows: ## "Weathering" categories: - A: Minor rustiness; rust haloes on metal particles and rust stains along fractures are minor. - B: Moderate rustiness; large rust haloes occur on metal particles and rust stains on internal fractures are extensive. - C: Severe rustiness; metal particles have been mostly, if not totally, converted to rust and the specimen is uniformly stained by rust throughout. Degrees of weathering for meteorites that do not contain metal are based mostly on overall rustiness whereas degrees of weathering assigned to metal-bearing meteorites are influenced largely by rustiness of metal grains. Therefore, in addition to difficulties that can be expected in comparing weathering states of achondrites with those of chondrites, the A-B-C scale is difficult to apply uniformly to either achondrites (e.g., aubrite vs. eucrite) or chondrites (e.g., H-, L-, or LL-chondrite vs. C-chondrite). ### "Fracturing" categories: A: Minor cracks; few or no cracks are conspicuous to the naked eye and no cracks penetrate the entire specimen. B: Moderate cracks; several cracks extend across exterior surfaces of the specimen and can be readily broken along the cracks. C: Severe cracks; specimen readily crumbles along cracks that are both extensive and abundant. Each entry under the "Smithsonian" column refers to the "No." and beginning page number of the appropriate chapter in the Smithsonian publication (see below). Each entry in the "Newsletter" column refers to the "Vol. (No.)" of the corresponding issue of the AMN. For example, the entries "26,23" and "5(4), 6(1)" for ALHA81005 indicate that descriptions of the meteorite can be found in the chapter beginning on page 23 in Smithsonian Contributions to the Earth Sciences No. 26 and in AMN issues 5(4) and 6(1). Readers should refer to all of the cited references in order to follow changes in classification that have occurred for some specimens. The currently accepted classification of each specimen is listed under the "Classification" column in Table 1 and may not necessarily be the same as given in the original description. Full citations of Smithsonian references are as follows: Marvin, U. B. and B. Mason (eds.) (1984) Field and Laboratory Investigations of Meteorites from Victoria Land, Antarctica, <u>Smithsonian Contr. Earth Sci. No. 26</u>, Smithsonian Institution Press, 134 pp. Marvin, U. B. and B. Mason (eds.) (1982) Catalog of Meteorites from Victoria Land, Antarctica, 1978-1980, Smithsonian Contr. Earth Sci. No. 24, Smithsonian Institution Press, 97 pp. Marvin, U. B. and B. Mason (eds.) (1980) Catalog of Antarctic Meteorites, 1977-1978, <u>Smithsonian Contr. Earth Sci. No. 23</u>, Smithsonian Institution Press, 50 pp. Requests for copies of the Smithsonian publications should be sent to one of the Smithsonian editors: Dr. Ursula B. Marvin Smithsonian Astrophysical Observatory 60 Garden Street Cambridge, MA 02138 Dr. Brian Mason NHB-119/Mineral Sciences Smithsonian Institution Washington, DC 20560. Back issues of AMN can be obtained from the following address: Curator/Antarctic Meteorites SN2/Planetary Materials Branch NASA Johnson Space Center Houston, TX 77058 Telephone: (713) 483-3274. Table 1. Classified Meteorites from the 1976-1985 Collections (as of August, 1986) | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|--------------------------------------|---|---------------------------|------------|---|--| | ALHA76001
ALHA76002 | 20151.0
307.0 | L-6 CHONDRITE
IRON-GROUP IA | Α | Α | 23,12
24,49 | 1(3) | | ALHA76003
ALHA76004 | 10495.0
52.5 | L-6 CHONDRITE
LL-3 CHONDRITE | A
A | A
A | 23,12
23,12
23,12 | 4(1)
1(3) | | ALHA76005 | 317.3 | EUCRITE (POLYMICT) | A | Α | 23,12 | 4(1)
2(1) | | ALHA76006 | 271.0 | H-6 CHONDRITE | С | В | 23,12 | 4(1)
1(3) | | ALHA76007 | 78.5 | L-6 CHONDRITE | В | Α | 23,12 | 4(1)
1(3) | | ALHA76008 | 281.3 | H-6 CHONDRITE | B/C | В | 23,12 | 4(1)
1(3) | | ALHA76009 | 3950.0 | L-6 CHONDRITE | В | В | 23,12 | 4(1)
1(3) | | ALHA77001 | 252.0 | L-6 CHONDRITE | В | В | 23,12 | 4(1)
1(1)
1(2) | | ALHA77002 | 235.2 | L-5 CHONDRITE | В | A/B | 23,12 | 4(1)
1(1)
1(2) | | ALHA77003 | 779.6 | CARBONACEOUS C30 | Α | Α | 23,12 | 4(1)
1(2)
4(1) | | ALHA77004 | 2230.0 | H-4 CHONDRITE | С | С | 23,12 | 4(2)
2(1) | | ALHA77005 | 482.5 | SHERGOTTITE | Α | Α | 23,12 | 4(1)
1(2)
1(3) | | ALHA77007 @
ALHA77008 @
ALHA77009 | 99.3
93.0
235.5 | H-5 CHONDRITE
L-6 CHONDRITE
H-4 CHONDRITE | B
A
C | А | 26,55
26,55 | 4(1)
6(2)
6(2)
3(1) | | ALHA77010 | 295.8 | H-4 CHONDRITE | C | Α | | 3(1) | | ALHA77011 | 291.5 | L-3 CHONDRITE | С | А | 26,55 | 4(1)
3(1)
4(1) | | ALHA77012 | 180.2 | H-5 CHONDRITE | С | Α | | 4(2)
3(1) | | ALHA77013 @
ALHA77014 | 23.0
308.8 | L-3 CHONDRITE
H-5 CHONDRITE | B
C | B/C | 26,55
23,12 | 4(1)
6(2)
2(1) | | ALHA77015 | 411.1 | L-3 CHONDRITE | С | В | 23,12 | 4(1)
2(1) | | ALHA77016 @
ALHA77017 @
ALHA77018 @
ALHA77019 @
ALHA77021 | 78.3
77.9
51.8
59.8
16.7 | H-5 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE
L-6 CHONDRITE
H-5 CHONDRITE | B
B
B/C
B/C
C | Α | 26,55
26,55
26,55
26,55
23,12 | 4(1)
6(2)
6(2)
6(2)
6(2)
1(2)
4(1) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|---|---|--|------------|--|---| | ALHA77022 @
ALHA77023 @
ALHA77025 | 16.0
21.4
19.4 | H-5 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE | A
B
C | В | 26,55
26,55
23,12 | 6(2)
6(2)
1(2)
4(1) | | ALHA77026 @
ALHA77027 @
ALHA77029 @
ALHA77031 @
ALHA77033 | 20.3
3.7
1.4
0.5
9.3 | L-6 CHONDRITE
L-6 CHONDRITE
CARBONACEOUS C30
L-3 CHONDRITE
L-3 CHONDRITE | B/C
B/C
A/B
B/C
C | В | 26,55
26,55
26,55
26,55
23,12 | 6(2)
6(2)
6(2)
6(2)
1(2) | | ALHA77034 @ ALHA77036 @ ALHA77038 @ ALHA77039 @ ALHA77041 @ ALHA77042 @ ALHA77045 @ ALHA77046 @ ALHA77047 @ ALHA77050 @ ALHA77051 @ ALHA77052 @ ALHA77054 @ ALHA77056 @ ALHA77056 @ ALHA77056 @ ALHA77060 @ ALHA77061 | 1.8
8.5
18.8
8.2
16.6
20.4
11.4
17.9
7.6
20.5
7.3
84.2
15.0
112.2
10.4
12.3
3.7
64.4
12.6 | L-3 CHONDRITE L-3 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE H-5 CHONDRITE L-3 CHONDRITE H-6 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE L-4 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE | B/C
B/B
A/B
A/B
B/C
A/C
B/C
B/C
B/C
B/C
B/C
B/B
B/C
B/C | A | 26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55 | 4(1)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2 | | ALHA77062 | 16.7 | H-5 CHONDRITE | В | В | 23,12 | 4(1)
1(2)
4(1) | | ALHA77063 @
ALHA77064 | 2.9
6.5 | H-5 CHONDRITE
H-5 CHONDRITE | B
B | В | 26,55
23,12 | 6(2)
1(2)
4(1) | | ALHA77066 @
ALHA77069 @
ALHA77070 @
ALHA77071 | 4.9
0.8
18.4
10.9 | H-5 CHONDRITE
L-6 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE | A
B/C
B
B | В | 26,55
26,55
26,55
23,12 | 6(2)
6(2)
6(2)
1(2)
4(1) | | ALHA77073 @
ALHA77074 | 10.1
12.1 | H-5 CHONDRITE
H-5 CHONDRITE | A/B
B | В | 26,55
23,12 | 6(2)
1(2)
4(1) | | ALHA77076 @
ALHA77078 @
ALHA77079 @
ALHA77081 | 1.7
24.1
7.8
8.6 | H-5 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE
H(?) CHONDRITE | B
B
A
B | A | 26,55
26,55
26,55
23,12 | 6(2)
6(2)
6(2)
1(2)
4(1) | | ALHA77082 @
ALHA77084 @
ALHA77085 @
ALHA77086 | 12.0
44.1
45.9
19.4 | H-5 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE | A/B
A/B
B
C | В | 26,55
26,55
26,55
23,12 | 6(2)
6(2)
6(2)
1(2)
4(1) | | ALHA77087 @
ALHA77088 | 30.7
51.2 | H-5 CHONDRITE
H-5 CHONDRITE | B
C | В | 26,55
23,12 | 6(2)
1(2)
4(1) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian N | lewsletter | |---|---
---|---|------------|--|--| | ALHA77089 @ ALHA77091 @ ALHA77092 @ ALHA77094 @ ALHA77096 @ ALHA77098 @ ALHA77100 @ ALHA77101 @ ALHA77102 | 7.8
4.2
45.0
6.6
2.5
8.0
18.2
3.8
12.3 | L-6 CHONDRITE H-5 | B
B/C
A
B
A
B
A/B
B | В | 26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55 | 6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
1(2) | | ALHA77104 @ ALHA77106 @ ALHA77108 @ ALHA77111 @ ALHA77112 @ ALHA77113 @ ALHA77114 @ ALHA77115 @ ALHA77117 @ ALHA77118 | 6.3
7.8
0.7
52.3
21.7
2.0
44.5
154.4
20.8
7.8 | H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE L-3 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE | A
A/B
A/B
A
B
B/C
A/B
C | В | 26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55 | 4(1)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
1(2) | | ALHA77119 | 6.4 | H-5 CHONDRITE | C | В | 23,12 | 4(1)
1(2) | | ALHA77120 @
ALHA77122 @
ALHA77124 | 3.9
4.6
4.4 | H-5 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE | A/B
B
C | A | 26,55
26,55
23,12 | 4(1)
6(2)
6(2)
1(2) | | ALHA77125 @
ALHA77126 @
ALHA77127 @
ALHA77129 @
ALHA77130 @
ALHA77131 @
ALHA77132 @
ALHA77133 @
ALHA77136 @
ALHA77136 @
ALHA77138 @
ALHA77139 @
ALHA77140 | 18.7
25.2
3.8
1.7
24.8
25.9
115.4
18.7
19.1
3.6
2.1
65.9
78.6 | H-5 CHONDRITE H-5 CHONDRITE L-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE L-3 CHONDRITE | A/B
B
B
A/B
A/B
A
A/B
A/B
C | В | 26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55 | 4(1)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2) | | ALHA77142 @
ALHA77143 @
ALHA77144 | 3.1
39.0
7.9 | H-5 CHONDRITE
H-5 CHONDRITE
H-6 CHONDRITE | A/B
A/B
B | A | 26,55
26,55
23,12 | 4(1)
6(2)
6(2)
1(2) | | ALHA77146 @
ALHA77147 @
ALHA77148 | 18.2
18.7
13.1 | H-6 CHONDRITE
H-6 CHONDRITE
H-6 CHONDRITE | A/B
A/B
C | В | 26,55
26,55
23,12 | 4(1)
6(2)
6(2)
1(2) | | ALHA77149 @
ALHA77150 | 25.6
58.3 | H-6 CHONDRITE
L-6 CHONDRITE | A/B
C | В | 26,55
23,12 | 4(1)
6(2)
1(2)
4(1) | | ALHA77151 @
ALHA77152 @
ALHA77153 @ | 16.9
17.8
12.0 | H-5 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE | A
A
A | | 26,55
26,55
26,55 | 6(2)
6(2)
6(2) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|---|---|--|------------|---|--| | ALHA77155 | 305.3 | L-6 CHONDRITE | A/B | Α | 23,12 | 2(1)
4(1) | | ALHA77156 @
ALHA77157 @
ALHA77158 @
ALHA77159 @
ALHA77160 | 17.7
88.3
19.9
17.0
70.4 | EH-4 CHONDRITE
H-6 CHONDRITE
H-5 CHONDRITE
L-6 CHONDRITE
L-3 CHONDRITE | B
A/B
B
A/B
C | В | 26,55
26,55
26,55
26,55
23,12 | 6(2)
6(2)
6(2)
6(2)
1(3)
4(1) | | ALHA77161 @
ALHA77162 @
ALHA77163 @
ALHA77164 | 6.1
29.0
24.3
38.1 | H-5 CHONDRITE
L-6 CHONDRITE
L-3 CHONDRITE
L-3 CHONDRITE | B
A
B/C
C | С | 26,55
26,55
26,55
23,12 | 6(2)
6(2)
6(2)
1(3) | | ALHA77165 | 30.5 | L-3 CHONDRITE | , C | C | 23,12 | 1(3) | | ALHA77166 @
ALHA77167 | 138.8
611.2 | L-3 CHONDRITE
L-3 CHONDRITE | C | B/C | 26,55
23,12 | 6(2)
2(1)
4(1) | | ALHA77168 @ ALHA77170 @ ALHA77171 @ ALHA77173 @ ALHA77174 @ ALHA77175 @ ALHA77176 @ ALHA77177 | 24.7
12.2
23.8
25.8
32.4
23.3
55.4
368.2 | H-5 CHONDRITE L-3 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE | B
B/C
A/B
B
A
B/C
B
C | A | 26,55
26,55
26,55
26,55
26,55
26,55
26,55
23,12 | 6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
2(1)
4(1) | | ALHA77178 @
ALHA77180 | 5.7
190.8 | L-3 CHONDRITE
L-6 CHONDRITE | B/C
C | Α | 26,55
24,19 | 6(2)
3(1)
4(1) | | ALHA77181 @
ALHA77182 | 33.0
1134.7 | H-5 CHONDRITE
H-5 CHONDRITE | B
C | В | 26,55
23,12 | 6(2)
2(1) | | ALHA77183 | 288.0 | H-6 CHONDRITE | С | A | 24,19 | 3(1) | | ALHA77184 @
ALHA77185 @
ALHA77186 @
ALHA77187 @
ALHA77188 @
ALHA77190 | 127.6
28.0
122.4
52.2
109.0
387.1 | H-5 CHONDRITE
L-3 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE
H-4 CHONDRITE | B
A/B
A/B
A/B
C | С | 26,55
26,55
26,55
26,55
26,55
23,12 | 6(2)
6(2)
6(2)
6(2)
6(2)
2(1)
4(1) | | ALHA77191 | 642.2 | H-4 CHONDRITE | C | B/C | 23,12 | 2(1)
4(1) | | ALHA77192 | 845.3 | H-4 CHONDRITE | С | С | 23,12 | 2(1) | | ALHA77193 @ ALHA77195 @ ALHA77197 @ ALHA77198 @ ALHA77200 @ ALHA77201 @ ALHA77202 @ ALHA77205 @ ALHA77207 @ ALHA77208 | 6.7
4.7
20.3
7.3
0.9
15.0
2.7
3.1
4.9
1733.0 | H-5 CHONDRITE H-5 CHONDRITE L-3 CHONDRITE L-6 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-4 CHONDRITE | A
A/B
B
C
A
B
B
A/B | С | 26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55 | 6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
1(3)
4(1) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|--|---|---|------------|--|---| | ALHA77209 @
ALHA77211 @
ALHA77212 @
ALHA77213 @
ALHA77214 | 31.8
26.7
16.8
8.4
2111.0 | H-6 CHONDRITE
L-3 CHONDRITE
H-6 CHONDRITE
H-5 CHONDRITE
L-3 CHONDRITE | B
B/C
A/B
A
C | C . | 26,55
26,55
26,55
26,55
23,12 | 6(2)
6(2)
6(2)
6(2)
1(2) | | ALHA77215 | 819.6 | L-3 CHONDRITE | В | B/C | 23,12 | 4(1)
2(1) | | ALHA77216 | 1470.0 | L-3 CHONDRITE | A/B | B/C | 23,12 | 4(1)
2(1) | | ALHA77217 | 413.2 | L-3 CHONDRITE | В | B/C | | 4(1)
2(1) | | ALHA77218 @
ALHA77219 | 45.1
637.1 | L-5 CHONDRITE
MESOSIDERITE | A
B | В | 26,55
23,12 | 4(1)
6(2)
1(3) | | ALHA77220 @
ALHA77221 | 69.1
229.2 | H-5 CHONDRITE
H-4 CHONDRITE | B
C | Α | 26,55
24,19 | 4(1)
6(2)
3(1) | | ALHA77222 @
ALHA77223 | 125.4
207.9 | H-4 CHONDRITE
H-4 CHONDRITE | A/B
C | С | 26,55
24,19 | 4(1)
6(2)
3(1) | | ALHA77224 | 786.9 | H-4 CHONDRITE | C | С | 23,12 | 1(3) | | ALHA77225 | 5878.0 | H-4 CHONDRITE | C | C | 24,19 | 4(1)
3(1) | | ALHA77226 | 15323.0 | H-4 CHONDRITE | C | C | 24,19 | 3(2) | | ALHA77227 @
ALHA77228 @
ALHA77230 | 16.0
19.3
2473.0 | H-5 CHONDRITE
H-5 CHONDRITE
L-4 CHONDRITE | A
B
C | В | 26,55
26,55
23,12 | 4(1)
6(2)
6(2)
1(3) | | ALHA77231 | 9270.0 | L-6 CHONDRITE | A/B | A/B | 23,12 | 4(1)
2(1) | | ALHA77232 | 6494.3 | H-4 CHONDRITE | C | C | 24,19 | 4(1)
3(1) | | ALHA77233 | 4087.0 | H-4 CHONDRITE | С | В | 23,12 | 4(1)
2(1) | | ALHA77235 @ ALHA77237 @ ALHA77239 @ ALHA77240 @ ALHA77241 @ ALHA77242 @ ALHA77245 @ ALHA77246 @ ALHA77247 @ ALHA77248 @ ALHA77249 ALHA77249 | 4.9
4.1
19.0
25.1
144.1
56.5
39.5
33.4
41.6
44.3
96.1
503.6 | H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE L-3 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-8 CHONDRITE L-9 CHONDRITE | A/B
A
B
A
C
B
B/C
A/B
B
A/C
C | С | 26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55
26,55 | 4(1)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2 | | ALHA77251 @
ALHA77252 | 68.8
343.1 | L-6 CHONDRITE
L-3 CHONDRITE | B
B | С | 23,12
26,55
23,12 | 3(2)
4(1)
6(2)
2(1)
4(1) | | | | | | | | • • | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |--|---------------------------------|--|------------------|------------|----------------------------------|------------------------------| | ALHA77253 @
ALHA77254 | 23.6
245.8 | H-5
CHONDRITE
L-5 CHONDRITE | A/B
A/B | Α | 26,55
23,12 | 6(2)
2(1)
4(1) | | ALHA77255 | 765.1 | IRON-ATAXITE (AND | DM) | | 24,49
23,12 | 2(1)
3(2)
4(1) | | ALHA77256 | 676.2 | DIOGENITE | A/B | A . | 23,12 | 1(2) | | ALHA77257 | 1995.7 | UREILITE | Α | В | 23,12 | 1(2)
4(1) | | ALHA77258 | 597.3 | H-6 CHONDRITE | B/C | A/B | 23,12 | 2(1)
4(1) | | ALHA77259 | 294.0 | H-5 CHONDRITE | C | В | 24,19 | 3(1) | | ALHA77260 | 744.3 | L-3 CHONDRITE | C | С | 23,12 | 2(1)
4(1) | | ALHA77261 | 411.7 | L-6 CHONDRITE | В | В | 23,12 | 2(1)
4(1) | | ALHA77262 | 861.5 | H-4 CHONDRITE | B/C | В | 23,12 | 2(1)
4(1) | | ALHA77263 | 1669.0 | IRON-GROUP IA | | | 24,49
23,12 | 2(1)
3(2)
4(1) | | ALHA77264 | 11.0 | H-5 CHONDRITE | A/B | Α | 23,12 | 1(2)
4(1) | | ALHA77265 @
ALHA77266 @
ALHA77267 @
ALHA77268 | 18.3
108.4
103.5
272.0 | H-5 CHONDRITE
H-5 CHONDRITE
L-5 CHONDRITE
H-5 CHONDRITE | В
В
А
С | c | 26,55
26,55
26,55
24,19 | 6(2)
6(2)
6(2)
3(1) | | ALHA77269 | 1045.0 | L-6 CHONDRITE | В | Α | 23,12 | 1(3) | | ALHA77270 | 588.9 | L-6 CHONDRITE | A/B | В | 23,12 | 2(1)
4(1) | | ALHA77271 | 609.5 | H-6 CHONDRITE | C | Α | 23,12 | 1(3)
4(1) | | ALHA77272 | 674.1 | L-6 CHONDRITE | B/C | В | 23,12 | 1(2)
4(1) | | ALHA77273 | 492.0 | L-6 CHONDRITE | B | В | 23,12 | 1(3)
4(1) | | ALHA77274 | 288.1 | H-5 CHONDRITE | C | Α | 24,19 | 3(1)
4(1) | | ALHA77275 @
ALHA77277 | 24.9
142.7 | H-5 CHONDRITE
L-6 CHONDRITE | A
A/B | Α | 26,55
23,12 | 6(2)
1(3)
4(1) | | ALHA77278 | 312.9 | LL-3 CHONDRITE | Α | Α | 23,12 | 1(2) | | ALHA77279 @
ALHA77280 | 174.5
3226.0 | H-5 CHONDRITE
L-6 CHONDRITE | A
B | B/C | 26,55
23,12 | 6(2)
1(3)
4(1) | | ALHA77281 | 1231.0 | L-6 CHONDRITE | В | B | 23,12 | 1(3)
4(1) | | ALHA77282 | 4127.1 | L-6 CHONDRITE | В | . B | 23,12 | 1(3) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|---------------------------------------|---|------------------|------------|----------------|--| | ALHA77283 | 10510.0 | IRON-GROUP IA | | | 24,49
23,12 | 1(3)
3(2) | | ALHA77284 | 376.2 | L-6 CHONDRITE | A/B | В | 23,12 | 4(1)
2(1) | | ALHA77285 | 271.1 | H-6 CHONDRITE | С | В | 23,12 | 4(1)
2(1) | | ALHA77286 | 245.8 | H-4 CHONDRITE | C | В | 24,19 | 4(1)
3(1) | | ALHA77287 | 230.1 | H-5 CHONDRITE | С | Α | 24,19 | 4(1)
3(1) | | ALHA77288 | 1880.0 | H-6 CHONDRITE | С | В | 23,12
23,12 | 4(1)
1(3) | | ALHA77289 | 2186.0 | IRON-GROUP IA | | | 24,49
23,12 | 4(1)
2(1)
3(2) | | ALHA77290 | 3784.0 | IRON-GROUP IA | | | 24,49
23,12 | 1(3)
3(2) | | ALHA77291 @
ALHA77292 | 5.8
199.6 | H-5 CHONDRITE
L-6 CHONDRITE | A
B | A | 26,55
24,19 | 6(2)
3(1) | | ALHA77293 @
ALHA77294 | 109.7
1351.0 | L-6 CHONDRITE
H-5 CHONDRITE | B
A | Α | 26,55
23,12 | 6(2)
2(1) | | ALHA77295 @
ALHA77296 | 141.3
963.3 | EH-4 CHONDRITE
L-6 CHONDRITE | B
A/B | Α | 26,55
23,12 | 6(2)
2(1) | | ALHA77297 | 951.6 | L-6 CHONDRITE | Α | В | 23,12 | 2(1) | | ALHA77299 | 260.7 | H-3 CHONDRITE | Α | Α | 23,12 | 1(2) | | ALHA77300 | 234.5 | H-5 CHONDRITE | C | В | 23,12 | 2(1) | | ALHA77301 @
ALHA77302 | 54.9
235.5 | L-6 CHONDRITE
EUCRITE (POLYMICT) | A
A | А | 26,55
23,12 | 6(2)
1(2)
1(3) | | ALHA77303 @
ALHA77304 | 78.6
650.4 | L-3 CHONDRITE
L-4 CHONDRITE | B/C
B | В | 26,55
23,12 | 1(3)
4(1)
6(2)
2(1)
4(1) | | ALHA77305 | 6444.0 | L-6 CHONDRITE | B/C | В | 23,12 | 1(3) | | ALHA77306 | 19.9 | CARBONACEOUS C2 | А | Α | 23,12 | 4(1)
1(1)
1(2)
1(3) | | ALHA77307 | 181.3 | CARBONACEOUS C3 | Α | Α | 23,12 | 4(1)
1(3) | | ALHA78001 +
ALHA78002 +
ALHA78003
ALHA78004 *
ALHA78005 + | 84.5
11.5
124.8
35.9
28.2 | H-5 CHONDRITE
H-6 CHONDRITE
L-6 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE | B
A
C
B | В | | 4(1)
8(2)
8(2)
7(2)
6(2)
8(2) | | ALHA78006
ALHA78008 | 8.0
7.4 | HOWARDITE H-5 CHONDRITE | Α | Α | 24,19 | 6(2)
8(2)
2(2)
4(1)
7(2) | | | | | | | | | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|---|---|--------------------|------------|-------------|--| | ALHA78010 +
ALHA78012
ALHA78013
ALHA78015 *
ALHA78017 +
ALHA78018 +
ALHA78019 | 1.3
38.1
4.1
34.9
2.9
17.9
30.3 | H-5 CHONDRITE H-5 CHONDRITE L-3 CHONDRITE LL(?L)-3 CHONDRIT L-3 CHONDRITE H-5 CHONDRITE UREILITE | B
B
B
B/C | C | 24,19 | 8(2)
7(2)
7(2)
6(2)
8(2)
8(2)
2(2)
4(1) | | ALHA78021
ALHA78023
ALHA78025 +
ALHA78027 *
ALHA78028
ALHA78029 +
ALHA78031
ALHA78033 +
ALHA78035
ALHA78037 +
ALHA78038 | 17.1
9.8
8.3
29.2
4.4
4.1
4.6
5.0
2.5
0.5
363.0 | H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-4 CHONDRITE H-4 CHONDRITE H-6 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE | A
B
B | С | 24,19 | 7(2)
7(2)
8(2)
6(2)
7(2)
8(2)
7(2)
8(2)
3(2) | | ALHA78039 | 299.0 | L-6 CHONDRITE | В | В | 24,19 | 4(1)
4(2)
3(2) | | ALHA78040 | 211.7 | EUCRITE (POLYMICT |) A | A | 24,19 | 4(1)
2(2)
4(1) | | ALHA78041 +
ALHA78042 | 117.5
214.1 | L-3 CHONDRITE
L-6 CHONDRITE | B
B | A | 24,19 | 8(2)
3(2)
4(1) | | ALHA78043 | 680.0 | L-6 CHONDRITE | В | В | 24,19 | 3(2)
4(1) | | ALHA78044 | 164.1 | L-4 CHONDRITE | B/C | В | | 4(1)
4(2) | | ALHA78045 | 396.5 | L-6 CHONDRITE | B/C | В | 24,19 | 3(2)
4(1) | | ALHA78046
ALHA78047 *
ALHA78048 | 70.0
130.3
190.6 | L-3 CHONDRITE
H-5 CHONDRITE
L-6 CHONDRITE | B
A/B | B
B | 24,19 | 7(2)
6(2)
3(2)
4(1) | | ALHA78049 +
ALHA78050 | 95.8
1045.0 | H-5 CHONDRITE
L-6 CHONDRITE | B
B | В | 24,19 | 8(2)
3(1)
4(1) | | ALHA78051
ALHA78052 *
ALHA78053 | 119.5
97.3
179.0 | H-4 CHONDRITE
H-5 CHONDRITE
H-4 CHONDRITE | C | B
B | 24,19 | 7(2)
6(2)
3(2)
4(1) | | ALHA78055 +
ALHA78057
ALHA78059 + | 13.7
8.7
9.1 | L-6 CHONDRITE
H-4 CHONDRITE
L-6 CHONDRITE | В | | | 8(2)
7(2)
8(2)
7(2) | | ALHA78062
ALHA78063 +
ALHA78065 + | 10.9
76.7
7.3 | LL-6 CHONDRITE
LL-6 CHONDRITE
H-6 CHONDRITE | A
B | | | 8(2)
8(2)
7(2) | | ALHA78067
ALHA78069 + | 7.8
4.4 | H-6 CHONDRITE
H-6 CHONDRITE
L-4 CHONDRITE | В | er. | | 8(2)
7(2) | | ALHA78070
ALHA78074 | 10.0
200.2 | L-6 CHONDRITE | B | В | 24,19 | 3(2)
4(1) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|--|--|------------|------------|-------------|--| | ALHA78075 | 280.6 | H-5 CHONDRITE | B/C | В | 24,19 | 3(2)
4(1) | | ALHA78076 | 275.6 | H-6 CHONDRITE | В | В | 24,19 | 3(2) | | ALHA78077 | 330.6 | H-4 CHONDRITE | С | В | 24,19 | 4(1)
3(2) | | ALHA78078 | 290.3 | L-6 CHONDRITE | A/B | Α | 24,19 | 4(1)
3(2) | | ALHA78079
ALHA78080
ALHA78081 *
ALHA78082 +
ALHA78084 | 4.5
24.8
17.8
24.0
14280.0 | H-5 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE
LL-6 CHONDRITE
H-4 CHONDRITE | A
B/C | В | 24,19 | 4(1)
7(2)
7(2)
6(2)
8(2)
3(3) | | ALHA78085 | 219.3 | H-5 CHONDRITE | В | В | 24,19 | 4(1)
3(1)
3(2) | | ALHA78086 * ALHA78088 * ALHA78090 * ALHA78092 * ALHA78094 * ALHA78096 * ALHA78098 * ALHA78100 | 9.0
5.2
7.5
16.3
4.0
7.5
2.2
84.9 | H-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE IRON-GROUP IIA | | | 24,49 | 4(1)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2) | | ALHA78101
ALHA78102 | 121.2
336.9 | L-6 CHONDRITE
H-5 CHONDRITE | B/C | В | 24,49 | 4(1)
7(2)
3(1)
3(2) | | ALHA78103 | 589.7 | L-6 CHONDRITE | В | В | 24,19 | 4(1)
3(1)
3(2) | | ALHA78104 | 672.4 | L-6 CHONDRITE | В | Α | 24,19 | 4(1)
3(2) | | ALHA78105 | 941.7 | L-6 CHONDRITE | В | Α | 24,19 | 4(1)
3(1) | | ALHA78106 | 464.5 | L-6 CHONDRITE | A/B | Α | 24,19 | 3(2) | | ALHA78107 | 198.4 | H-5 CHONDRITE | С | Α | 24,19 | 3(2) | | ALHA78108 | 172.5 | H-5 CHONDRITE | В | В | 24,19 | 3(2) | | ALHA78109 | 233.2 | LL-5 CHONDRITE | A/B | Α | 24,19 | 3(2) | | ALHA78110 | 160.7 | H-5 CHONDRITE | B/C | В | 24,19 | 3(2) | | ALHA78111 | 126.8 | H-5 CHONDRITE | B/C | Α | | 4(1) | | ALHA78112 | 2485.0 | L-6 CHONDRITE | B | В | 24,19 | 3(2) | | ALHA78113 | 298.6 | AUBRITE | A/B | Α | 24,19 | 2(2) | | ALHA78114 | 808.1 | L-6 CHONDRITE | B/C | В | 24,19 | 3(2) | | ALHA78115 | 847.6 | H-6 CHONDRITE | В | A | 24,19 | 3(2)
4(1) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |--|---
---|----------------|------------|-------------|--| | ALHA78116 * ALHA78117 + ALHA78119 + ALHA78120 ALHA78121 * | 127.8
4.3
102.6
44.3
30.4 | H-5 CHONDRITE
H-5 CHONDRITE
L-3 CHONDRITE
H-4 CHONDRITE
H-5 CHONDRITE | B
A
A | В | | 6(2)
8(2)
8(2)
7(2)
6(2)
7(2) | | ALHA78122
ALHA78123 +
ALHA78124 | 4.7
18.4
27.7 | H-6 CHONDRITE
H-5 CHONDRITE
H-6 CHONDRITE | В | D | | 7(2)
8(2)
7(2)
6(2)
3(2) | | ALHA78125 *
ALHA78126 | 18.8
606.9 | L-6 CHONDRITE
L-6 CHONDRITE | B
B | B
B | 24,19 | 3(2)
4(1) | | ALHA78127 | 194.5 | L-6 CHONDRITE | B/C | В | 24,19 | 3(2)
4(1) | | ALHA78128 | 154.7 | H-5 CHONDRITE | C | B/C | 24,19 | 3(2)
4(1) | | ALHA78129 +
ALHA78130 | 128.3
2733.0 | H-5 CHONDRITE
L-6 CHONDRITE | B
B/C | В | 24,19 | 8(2)
3(2)
4(1) | | ALHA78131 | 268.8 | L-6 CHONDRITE | B/C | Α | 24,19 | 3(2)
4(1) | | ALHA78132 | 656.0 | EUCRITE (POLYMICT |) A | Α | 24,19 | 2(2)
4(1) | | ALHA78133
ALHA78134 | 59.9
458.3 | L-3 CHONDRITE
H-4 CHONDRITE | B/C | B/C | 24,19 | 7(2)
3(2) | | ALHA78135 *
ALHA78136 +
ALHA78137 | 130.8
51.6
70.0 | H-6 CHONDRITE
H-5 CHONDRITE
H-6 CHONDRITE | B
A | В | | 4(1)
6(2)
8(2)
7(2)
8(2)
6(2) | | ALHA78138 +
ALHA78139 *
ALHA78140 + | 10.8
17.0
16.6
24.1 | LL-3 CHONDRITE
H-5 CHONDRITE
H-4 CHONDRITE
H-5 CHONDRITE | В | | | 8(2)
6(2)
8(2)
7(2) | | ALHA78141
ALHA78142 *
ALHA78145 +
ALHA78146
ALHA78147 * | 31.5
34.4
16.5
30.6 | L-5 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE H-5,6 CHONDRITE | A | | | 6(2)
8(2)
7(2) | | ALHA78149 +
ALHA78150
ALHA78152 | 23.2
15.8
4.7 | L-3 CHONDRITE
H-5 CHONDRITE
H-6 CHONDRITE | В | | | 6(2)
8(2)
7(2)
7(2)
3(2)
4(1)
8(2)
7(2)
8(2)
2(2)
4(1) | | ALHA78153 | 151.7 | LL-6 CHONDRITE | B/C | В | 24,19 | 3(2)
4(1) | | ALHA78154 +
ALHA78156
ALHA78157 + | 11.8
8.6
63.4 | H-5 CHONDRITE
L-6 CHONDRITE
H-4 CHONDRITE | В | | | 8(2)
7(2)
8(2) | | ALHA78158 | 15.1 | EUCRITE (POLYMICT | | Α | 24,19 | 2(2)
4(1) | | ALHA78159
ALHA78160 *
ALHA78162 +
ALHA78163 +
ALHA78164
ALHA78165 | 22.6
16.0
33.2
9.6
25.1
20.9 | H-5 CHONDRITE H-5 CHONDRITE L-3 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE EUCRITE (POLYMIC) | В
В
Г) А | A | 24,19 | 7(2)
6(2)
8(2)
8(2)
7(2)
2(2)
4(1)
8(2)
8(2) | | ALHA78168 +
ALHA78169 +
ALHA78170 + | 33.6
22.2
20.9 | H-4 CHONDRITE
H-6 CHONDRITE
H-3 CHONDRITE | B
B
B | | | 8(2)
8(2)
8(2) | | ALHA78173 + 19.8 H-5 CHONDRITE B ALHA78174 + 13.5 H-5 CHONDRITE B ALHA78176 + 8.2 L-3 CHONDRITE B ALHA78178 + 7.2 H-5 CHONDRITE B | ws le tter | Smithsonian | Fracturing | Weathering | Classification | Weight
(g) | Sample
Number | |---|---|-------------------------|---------------------|-----------------|--|-----------------------------|--| | ALHA78180 + 7.9 L-3 CHONDRITE B ALHA78182 10.1 H-5 CHONDRITE ALHA78184 8.2 H-6 CHONDRITE ALHA78186 3.1 L-3 CHONDRITE ALHA78188 0.9 L-3 CHONDRITE C B 24,19 ALHA78189 22.7 H-6 CHONDRITE | 8(2)
8(2)
8(2)
8(2)
8(2)
8(2) | | | В
В
В | H-4 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE
L-3 CHONDRITE | 29.4
19.8
13.5
8.2 | ALHA78172 +
ALHA78173 +
ALHA78174 +
ALHA78176 + | | ALHA78188 | 8(2)
7(2)
7(2) | | | | L-3 CHONDRITE
H-5 CHONDRITE
H-6 CHONDRITE | 7.9
10.1
8.2 | ALHA78180 +
ALHA78182
ALHA78184 | | ALHA78190 20.1 H-5 CHONDRITE
ALHA78191 19.6 H-6 CHONDRITE | 8(2)
7(2)
7(2)
7(2)
4(1)
7(2)
7(2)
7(2) | 24,19 | В | С | L-3 CHONDRITE
H-6 CHONDRITE
H-5 CHONDRITE | 0.9
22.7
20.1 | ALHA78188
ALHA78189
ALHA78190 | | ALHA78193 13.3 H-4 CHONDRITE B/C A 24,19 | 4(1) | 24,19 | Α | B/C | H-4 CHONDRITE | 13.3 | ALHA78193 | | ALHA78196 11.2 H-4 CHONDRITE B/C B 24,19
ALHA78197 20.2 H-5 CHONDRITE | 7(2)
4(1)
7(2) | 24,19 | В | B/C | H-4 CHONDRITE
H-5 CHONDRITE | 11.2
20.2 | ALHA78196
ALHA78197 | | ALHA78203 10.9 H-5 CHONDRITE
ALHA78205 8.9 H-5 CHONDRITE | 7(2)
7(2)
7(2)
7(2)
7(2) | | | | H-5 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE | 9.8
10.9
8.9 | ALHA78201
ALHA78203
ALHA78205 | | ALHA78209 12.1 H-5 CHONDRITE B/C B 24,19
ALHA78211 11.5 H-6 CHONDRITE B B 24,19
ALHA78213 9.6 H-6 CHONDRITE B B 24,19 | 4(1)
4(1)
4(1) | 24,19
24,19 | B
B | B
B | H-5 CHONDRITE
H-6 CHONDRITE
H-6 CHONDRITE | 12.1
11.5
9.6 | ALHA78209
ALHA78211
ALHA78213 | | ALHA78215 6.4 H-6 CHONDRITE B/C B 24,19 ALHA78217 + 8.3 H-5 CHONDRITE B ALHA78219 + 8.2 H-5 CHONDRITE B ALHA78221 5.4 H-5 CHONDRITE B A 24,19 | 4(1)
8(2)
8(2)
4(1) | | _ | B
B | H-5 CHONDRITE
H-5 CHONDRITE | 8.3
8.2 | ALHA78217 +
ALHA78219 + | | ALHA78223 6.5 H-4 CHONDRITE B B 24,19
ALHA78225 4.6 H-5 CHONDRITE B A 24,19
ALHA78227 2.4 H-5 CHONDRITE B/C B 24,19 | 4(1)
4(1)
4(1) | 24,19
24,19
24,19 | B _.
A | B
B
B/C | H-4 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE | 6.5
4.6
2.4 | ALHA78223
ALHA78225
ALHA78227 | | ALHA78231 | 4(1)
4(1)
4(1)
8(2) | 24,19 | В | B/C
B/C
B | H-6 CHONDRITE
H-5 CHONDRITE
L-3 CHONDRITE | 1.9
1.3
19.2 | ALHA78231
ALHA78233
ALHA78235 + | | ALHA78236 14.4 L-3 CHONDRITE
ALHA78238 9.8 L-3 CHONDRITE
ALHA78239 + 16.0 L-3 CHONDRITE B
ALHA78241 6.5 H-5 CHONDRITE | 7(1)
8(2)
7(2)
7(2)
7(2)
7(2)
7(2)
7(2)
7(2)
7 | | | В | L-3 CHONDRITE
L-3 CHONDRITE | 9.8
16.0
6.5 | ALHA78238
ALHA78239 + | | ALHA78243 1.9 L-3 CHONDRITE
ALHA78245 4.0 H-5 CHONDRITE
ALHA78247 2.7 H-5 CHONDRITE
ALHA78249 4.2 H-6 CHONDRITE | 7(2)
7(2)
7(2) | | | - | L-3 CHONDRITE
H-5 CHONDRITE
H-5 CHONDRITE | 1.9
4.0
2.7 | ALHA78243
ALHA78245
ALHA78247 | | ALHA78251 1312.0 L-6 CHONDRITE B A 24,19 | 3(1) | 24,19 | Α | В | | | | | ALHA78252 2789.0 IRON-GROUP IVA 24,49 | 2(1)
3(2)
4(1) | 24,49 | | | IRON-GROUP IVA | 2789.0 | ALHA78252 | | ALHA78253 + 6.8 H-5 CHONDRITE B ALHA78255 + 3.2 H-5 CHONDRITE A ALHA78257 + 2.1 H-5 CHONDRITE B | 8(2)
8(2)
8(2) | | | Α | H-5 CHONDRITE | 3.2 | ALHA78255 + | | ALHA78259 + 6.2 H-5 CHONDRITE A ALHA78261 5.1 CARBONACEOUS C2 A A 24,19 | 8(2)
8(2)
8(2)
8(2)
3(2)
4(1) | 24,19 | А | Ą | H-5 CHONDRITE | 6.2 | ALHA78259 + | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsle tter | |--|---|---|---|-------------------------------------|---|---| | ALHA78262 | 26.2 | UREILITE | B/C | Α | 24,19 | 3(2)
4(1) | | ALHA79001
ALHA79002
ALHA79003
ALHA79005
ALHA79006
ALHA79007
ALHA79009
ALHA79010
ALHA79011
ALHA79012
ALHA79013
ALHA79014
ALHA79015
ALHA79016 | 32.3
222.8
5.1
34.9
60.0
41.0
142.3
12.0
75.7
25.1
14.0
191.9
28.3
10.8
64.0
1146.0
310.0 | L-3 CHONDRITE H-6 CHONDRITE LL-3 CHONDRITE H-5 CHON. W/ENCLAY H-6 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE H-5 H-6 CHONDRITE H-6 CHONDRITE EUCRITE (POLYMICT) | B
B/C
A/B
B
C
B/C
C
C
B
B
B/C | A B B B B B B B A B B A B B A | 24,19 24,19 24,19 24,19 24,19 24,19 24,19 24,19 24,19 24,19 24,19 24,19 24,19 24,19 24,19 | 4(1)
4(1)
4(1)
4(1)
4(1)
4(1)
4(1)
4(1) | | ALHA79017
ALHA79018
ALHA79019
ALHA79020
ALHA79021
ALHA79022 | 120.7
12.1
4.2
29.4
31.4 | L-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE L-3,4 CHONDRITE | B/C
B
B/C
B
A/B | A/B
A
B
A
B | 24,19
24,19
24,19
24,19
24,19 | 4(1)
4(1)
4(1)
4(1)
4(1)
4(1) | |
ALHA79023
ALHA79024
ALHA79025
ALHA79027
ALHA79028
ALHA79029
ALHA79031
ALHA79032
ALHA79033
ALHA79035
ALHA79035
ALHA79036
ALHA79040
ALHA79041
ALHA79041
ALHA79041
ALHA79042
ALHA79043
ALHA79045
ALHA79045
ALHA79045
ALHA79045
ALHA79046
ALHA79050
ALHA79050
ALHA79051
ALHA79051
ALHA79053
ALHA79053
ALHA79053 | 68.1
21.6
1208.0
572.0
133.2
16.3
505.5
2.7
280.8
12.6
20.2
14.8
49.7
108.3
13.2
20.1
11.5
62.2
115.4
89.7
19.3
36.7
54.0
27.0
23.9
22.6
86.1
36.0 | H-4 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-8 CHONDRITE H-9 CHONDRITE H-1 CHONDRITE H-1 CHONDRITE H-2 CHONDRITE H-2 CHONDRITE H-3 CHONDRITE H-5 | СС
ВССВВВССССВВВВВСВВВВСССВВВВССССВВВВВСССС | СВАВАВВВААВВВВАВВВВВВВВВВВАВВА
С | 24,19 | 4(2)
4(1)
4(1)
4(1)
4(1)
4(1)
4(1)
4(1)
4(1 | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|--|---|-----------------------------------|-----------------------------------|--|--| | ALHA79055
ALHA80101 | 15.3
8725.0 | H-6 CHONDRITE
L-6 CHONDRITE | B/C
B | B
B | 24,19 | 4(1)
4(2) | | ALHA80102 | 471.2 | EUCRITE (POLYMICT) | Α | В | 26,23 | 5(1)
4(2) | | ALHA80103 | 535.9 | L-6 CHONDRITE | В | Α | | 5(1)
4(2) | | ALHA80104 | 882.0 | IRON-ATAXITE | | | 26,49 | 5(1)
4(2) | | ALHA80105 | 445.1 | L-6 CHONDRITE | В | В | | 5(1)
4(2)
5(1) | | ALHA80106 | 432.2 | H-4 CHONDRITE | С | В | 26,23 | 4(2) | | ALHA80107
ALHA80108
ALHA80110 | 177.8
124.5
167.6 | L-6 CHONDRITE
L-6 CHONDRITE
L-6 CHONDRITE | B
B
B | B
B
B | | 5(1)
5(1)
5(1)
4(2) | | ALHA80111
ALHA80112 | 42.4
330.7 | H-5 CHONDRITE
L-6 CHONDRITE | B
B | A
B | | 5(1)
5(1)
4(2)
5(1) | | ALHA80113 | 312.6 | L-6 CHONDRITE | В | B/C | | 4(2) | | ALHA80114 | 232.8 | L-6 CHONDRITE | В | В | | 4(2) | | ALHA80115 | 306.0 | L-6 CHONDRITE | В | Α | | 5(1)
4(2) | | ALHA80116 | 191.2 | L-6 CHONDRITE | B/C | В | | 5(1)
4(2)
5(1) | | ALHA80117
ALHA80118
ALHA80119
ALHA80120
ALHA80121
ALHA80122
ALHA80123
ALHA80124
ALHA80125 | 89.0
2.4
33.7
60.1
39.1
49.8
27.8
12.0
139.2 | L-6 CHONDRITE H-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE H-4 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE | B
B
B
B/C
C
C
B | A
B
B
C
B
A
B | 26,23
26,23
26,23
26,23 | 5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
4(2)
5(1) | | ALHA80126
ALHA80127
ALHA80128
ALHA80129
ALHA80130
ALHA80131
ALHA80132 | 34.5
47.5
138.2
93.4
5.3
19.8
152.8 | H-6 CHONDRITE H-5 CHONDRITE H-4 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-4 CHONDRITE H-5 CHONDRITE | A/B
B
B
B
B/C
B | A
A
B/C
A
A
B
B | 26,23
26,23
26,23
26,23
26,23 | 5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
4(2)
5(1) | | ALHA80133
ALHA81001
ALHA81002
ALHA81003
ALHA81004
ALHA81005 | 3.6
52.9
14.0
10.1
4.7
31.4 | L-3 CHONDRITE
EUCRITE (ANOMALOUS
CARBONACEOUS C2
CARBONACEOUS C3V
CARBONACEOUS C2
ANORTHOSITIC BRECC | A
A/B
A/B | B
B
B
A/B
A | 26,23
26,23
26,23
26,23
26,23
26,23 | 5(1)
6(1)
6(1)
6(1)
6(1)
5(4) | | ALHA81006
ALHA81007
ALHA81008 | 254.9
163.5
43.8 | EUCRITE (POLYMICT)
EUCRITE (POLYMICT)
EUCRITE (POLYMICT) | A
A/B
A/B | A/B
A
A/B | 26,23
26,23
26,23 | 6(1)
6(1)
6(1)
6(1) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|---|---|---|--|--|---| | ALHA81009 | 229.0 | EUCRITE | Α | Α | 26,23 | 6(1)
7(1) | | ALHA81010
ALHA81011
ALHA81012
ALHA81013 | 219.1
405.7
36.7
17727.0
188.2 | EUCRITE (POLYMICT
EUCRITIC BRECCIA
EUCRITE
IRON
IRON |) A
A/B
A/B | A
A
A | 26,23
26,23
26,23
26,49
26,49 | 6(1)
6(1)
6(1)
6(1)
6(1) | | ALHA81014
ALHA81015
ALHA81017
ALHA81018
ALHA81019
ALHA81020
ALHA81021
ALHA81022
ALHA81023
ALHA81024
ALHA81025 | 5489.0
3850.2
1434.4
2236.9
1051.2
1352.5
695.1
912.5
418.3
797.7
379.0 | H-5 CHONDRITE L-6 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE E-6 CHONDRITE H-4 CHONDRITE L-5 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE | B
B
B
B/C
B
A
B/C
C | B
A
B
B
A
A/B
B
B | 26,23
26,23
26,23
26,23
26,23
26,23
26,23
26,23
26,23
26,23 | 6(1)
6(1)
6(1)
6(1)
6(1)
6(1)
6(1)
6(1) | | ALHA81026
ALHA81028
ALHA81029
ALHA81030
ALHA81031
ALHA81032
ALHA81033
ALHA81034
ALHA81035
ALHA81036
ALHA81037
ALHA81038
ALHA81040
ALHA81040
ALHA81040 | 515.5
3835.3
80.1
153.0
1851.6
1594.9
726.8
252.4
254.9
256.1
252.1
320.3
229.0
205.9
194.5
728.8
534.4 | L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 H-7 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE | С В С В С С В С С В С А/В С С | A A B B A C C B A A B B A C C C | 26,23
26,23
26,23
26,23
26,23
26,23
26,23
26,23
26,23
26,23
26,23
26,23 | 6(1)
6(2)
6(2)
6(1)
6(1)
6(1)
6(1)
6(1)
6(1)
6(1)
6(1 | | ALHA81043
ALHA81044 | 106.0
386.8 | H-4 CHONDRITE
H-4 CHONDRITE | B/C
C | C | 26,23 | 6(2)
6(2)
6(1)
6(2) | | ALHA81045
ALHA81046
ALHA81047
ALHA81048 | 90.2
16.6
81.2
190.6 | H-4 CHONDRITE
H-4 CHONDRITE
H-4 CHONDRITE
H-4 CHONDRITE | C
C
B/C
B/C | B/C
B/C
B/C
B/C | 26,23 | 6(2)
6(2)
6(2)
6(1)
6(2) | | ALHA81049
ALHA81050
ALHA81051
ALHA81053
ALHA81054
ALHA81055
ALHA81056
ALHA81057
ALHA81058
ALHA81059
ALHA81060 | 8.5
25.7
43.0
28.7
2.5
2.2
4.6
1.4
8.4
66.2
539.5
28.3 | H-4 CHONDRITE H-4 CHONDRITE H-4 CHONDRITE H-4 CHONDRITE L-3 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-4 CHONDRITE H-4 CHONDRITE H-4 CHONDRITE H-4 CHONDRITE H-4 CHONDRITE L-3 CHONDRITE | B/C
C
B/C
C
B
B
C
C
C | B
C
B
B
B
A
A
C
B/C
B | 26,49 | 6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |--|--|---|---|---|-------------------------|--| | ALHA81061
ALHA81062
ALHA81063
ALHA81064
ALHA81065
ALHA81066
ALHA81067
ALHA81069
ALHA81070
ALHA81071
ALHA81072
ALHA81073
ALHA81074
ALHA81075
ALHA81076
ALHA81077
ALHA81078
ALHA81079
ALHA81080
ALHA81080
ALHA81081
ALHA81081 | 23.7
0.5
4.9
191.0
13.1
8.7
227.6
23.7
7.2
3.7
2.5
3.2
3.3
8.0
15.7
10.3
4.2
5.9
7.5
| L-3 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE L-3 CHONDRITE H-5 CHONDRITE H-4 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-7 | B/C
C B/C
C B B/C
B B/C
B B B B B B C A/B | A A B A B B B A A A A A B A A A A A A A | 26,23 | 6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2) | | ALHA81083
ALHA81084
ALHA81085
ALHA81087
ALHA81088
ALHA81090
ALHA81091
ALHA81092
ALHA81093
ALHA81094
ALHA81095
ALHA81096
ALHA81097 | 6.6
15.7
16.2
5.7
8.4
3.8
11.2
9.5
12.2
15.6
271.0
152.0
58.8
83.0
79.9 | H-5 CHONDRITE H-5 CHONDRITE L-3 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-4 CHONDRITE H-4 CHONDRITE H-4 CHONDRITE | B
B
B
B
B
B
B
B
B
B
B
B
C
B
B
B
C
B
B
C
B
B
B
B
B
B
B
B
B
B
B
C
B
B
C
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B | A A A B B A A A B C B A B C | 26,23 | 6(2)
6(22)
6(22)
6(22)
6(22)
6(22)
6(22)
6(22)
6(22) | | ALHA81098
ALHA81100
ALHA81101
ALHA81102
ALHA81103
ALHA81104
ALHA81105
ALHA81106
ALHA81107
ALHA81108
ALHA81110
ALHA81111
ALHA81111 | 70.9
151.6
154.6
119.2
196.0
136.1
183.8
92.7
48.3
139.6
69.1
1.1
3.0
210.3
150.3
111.1
79.3 | MESOSIDERITE L-6 CHONDRITE H-5 CHONDRITE UREILITE H-6 CHONDRITE H-6 CHONDRITE H-4 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE | A/B
B/C
B/C
C
B
B
B/C
B/C
B/C | B/C
A
B
B/C
B/C
BA
B
A
BA
C
B/C | 26,23
26,23
26,23 | 6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2) | | ALHA81114
ALHA81115
ALHA81116 | 79.3
154.9
1.7 | H-4 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE | B/C
B/C
C
B | B/C
A/B
A | | 6(2)
6(2)
6(2)
6(2) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|---|---|---------------------------------------|--|-------------|---| | ALHA81117 ALHA81118 ALHA81120 ALHA81121 ALHA81122 ALHA81123 ALHA81125 ALHA81126 ALHA81127 ALHA81128 ALHA81129 ALHA81130 ALHA81131 ALHA81131 ALHA81132 ALHA81133 ALHA81134 ALHA81135 ALHA81136 ALHA81137 ALHA81138 ALHA81140 ALHA81141 ALHA81142 ALHA81141 ALHA81142 ALHA81143 ALHA81144 ALHA81145 ALHA81146 ALHA81147 ALHA81148 ALHA81150 ALHA81151 ALHA81150 ALHA81151 ALHA81150 ALHA81150 ALHA81151 ALHA81150 ALHA81161 ALHA81161 ALHA81162 ALHA81163 ALHA81165 ALHA81166 ALHA81166 ALHA81167 ALHA81166 ALHA81167 ALHA81167 ALHA81168 ALHA81169 ALHA81169 ALHA81167 ALHA81168 ALHA81167 ALHA81168 ALHA81167 ALHA81167 ALHA81170 ALHA81171 | 32.9
84.7
107.4
13.8
82.9
10.2
10.5
10.5
10.5
10.6
10.7
10.7
10.7
10.7
10.7
10.7
10.7
10.7 | H-4 CHONDRITE H-5 CHONDRITE L-4 CHONDRITE L-3 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE H-5 H-6 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-8 CHONDRITE H-9 CHONDRITE H-9 CHONDRITE H-10 CHONDRITE H-11 CHONDRITE H-2 CHONDRITE H-2 CHONDRITE H-3 CHONDRITE H-3 CHONDRITE H-4 CHONDRITE H-5 | ВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВ | ВАВВВВАААВВААВВААВВААВВААВВААВВААВВААВ | | 6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
6(2)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1 | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|--|--|--|--|-------------|--| | ALHA81173 ALHA81174 ALHA81175 ALHA81176 ALHA81177 ALHA81179 ALHA81180 ALHA81181 ALHA81181 ALHA81182 ALHA81184 ALHA81185 ALHA81186 ALHA81187 ALHA81188 ALHA81190 ALHA81191 ALHA81191 ALHA81192 ALHA81191 ALHA81193 ALHA81194 ALHA81195 ALHA81197 ALHA81198 ALHA81197 ALHA81198 ALHA81200 ALHA81201 ALHA81210 ALHA81210 ALHA81210 ALHA81210 ALHA81210 ALHA81211 ALHA81211 ALHA81213 ALHA81213 ALHA81214 ALHA81215 ALHA81218 ALHA81219 ALHA81219 ALHA81219 ALHA81220 | | Classification H-5 CHONDRITE H CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE L-4 CHONDRITE L-4 CHONDRITE L-4 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-8 CHONDRITE H-9 CHONDRITE H-9 CHONDRITE H-10 CHONDRITE H-11 CHONDRITE H-2 CHONDRITE H-3 CHONDRITE H-3 CHONDRITE H-4 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-8 CHONDRITE H-9 CHONDRITE H-10 CHONDRITE H-11 CHONDRITE H-12 CHONDRITE H-13 CHONDRITE H-14 CHONDRITE H-15 CHONDRITE H-15 CHONDRITE H-15 CHONDRITE H-20 CHONDRITE H-3 CHONDRITE H-3 CHONDRITE H-4 CHONDRITE H-5 | A/B B/C BBCA/ABBA/CCCA/BBBBBBCBBCCBBBCCB | ABBABBAAABABABAABAABAAAAAABBAAAABBAAAABBAAAA | Smithsonian | 7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1) | | ALHA81221
ALHA81223
ALHA81224
ALHA81225
ALHA81226
ALHA81227
ALHA81228
ALHA81229 | 9.2
9.5
13.6
13.9
2.9
11.3
7.7
40.0 | H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE L-3 CHONDRITE | C
A/B
B/C
B
C
B
C
C | A/B
A
A
A
A
B
A
B/C | | 8(1)
8(1)
8(1)
8(1)
8(1)
8(1)
8(1)
8(1) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter |
--|--|---|---|---|-------------|--| | ALHA81230
ALHA81231
ALHA81232
ALHA81233
ALHA81235
ALHA81236
ALHA81237
ALHA81239
ALHA81239
ALHA81240
ALHA81241
ALHA81242
ALHA81242
ALHA81243
ALHA81244
ALHA81244
ALHA81245
ALHA81246
ALHA81247
ALHA81247
ALHA81248
ALHA81249
ALHA81250
ALHA81250 | 12.5
9.2
4.6
25.0
4.7
6.7
40.9
26.9
24.1
31.6
41.3
34.2
19.9
15.0
4.6
3.8
3.4
104.2
10.4
16.9
158.0 | H-5 CHONDRITE H-4 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE H-5 L-3 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE | B B/C C C A/B C B C B B/C A/C B/C B/C B/C B/C B/C B/C B/C B/C B/C B | B
BA/B
BA/B
BBBCA/B
AABA/B
BBBBCA/B
BA/BBBBBA/BBBBBBBBBA/BBBBBBBBBB | 26,23 | 8(1)
8(1)
8(1)
8(1)
8(1)
8(1)
8(1)
8(1) | | ALHA81252
ALHA81253
ALHA81254
ALHA81255
ALHA81256
ALHA81257
ALHA81259
ALHA81260
ALHA81261
ALHA81263
ALHA81265
ALHA81265
ALHA81266
ALHA81267
ALHA81270
ALHA81271
ALHA81271
ALHA81272
ALHA81273
ALHA81273
ALHA81274
ALHA81275
ALHA81275
ALHA81276
ALHA81277
ALHA81279
ALHA81279
ALHA81279
ALHA81281
ALHA81281
ALHA81282
ALHA81283
ALHA81283
ALHA81283
ALHA81284
ALHA81285 | 2.1
10.2
8.6
11.5
28.5
28.7
1.1
9.9
124.1
11.8
55.5
6.0
7.5
12.3
26.8
17.9
42.8
18.5
11.1
42.3
6.6
1.1
27.1
54.9
45.6
9.9
20.0 | H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE E-6 CHONDRITE H-7 CHONDRITE H-8 CHONDRITE H-9 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-8 CHONDRITE H-9 CHONDRITE H-9 CHONDRITE H-10 CHONDRITE H-10 CHONDRITE H-11 CHONDRITE H-12 CHONDRITE H-13 CHONDRITE H-13 CHONDRITE H-14 CHONDRITE H-15 CHONDRITE H-15 CHONDRITE H-16 CHONDRITE H-17 CHONDRITE H-18 CHONDRITE H-19 H-10 CHONDRITE H-10 CHONDRITE H-10 CHONDRITE H-10 CHONDRITE | BACBCBBCAAABBACCBCBCCABCCBA/CBBCCBBCCBBC | ABABAABBABBBAABBAABBBAAAAAABAABAAAAAAAA | | 8(1)
8(1)
8(1)
8(1)
8(1)
8(1)
8(1)
8(1) | | Sample
Number | Weight
(g) | Classification V | Weathering | Fracturing | Smithsonian | Newsl e tter | |--|---|---|--|------------------------|-------------|---| | ALHA81286
ALHA81288
ALHA81289
ALHA81290
ALHA81291
ALHA81292
ALHA81293
ALHA81294
ALHA81295
ALHA81296
ALHA81297
ALHA81297
ALHA81300
ALHA81301
ALHA81301
ALHA81302
ALHA81303
ALHA81304
ALHA81305
ALHA81305
ALHA81306
ALHA81310
ALHA81310
ALHA81311
ALHA81311
ALHA81311
ALHA81312
ALHA81313
ALHA81313
ALHA81313
ALHA81314
ALHA81315
ALHA81316
ALHA81317 | 27.9 77.6 19.8 4.2 1.5 3.9 12.9 2.0 8.6 105.1 12.7 20.1 16.2 3.7 42.1 7.1 56.9 18.7 0.7 0.9 0.7 0.9 0.7 0.9 0.7 | H-5 CHONDRITE H-6 CHONDRITE L-6 CHONDRITE H-4 CHONDRITE H-6 CHONDRITE H-5 H-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-8 CHONDRITE H-9 CHONDRITE H-10 CHONDRITE H-11 CHONDRITE H-2 CHONDRITE H-2 CHONDRITE H-3 CHONDRITE H-4 CHONDRITE H-4 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE | BCBABBCBBBCABBBABBBCBBA BABCBBABBCBBABBCBBBCB | B | | 8(1)
8(1)
8(1)
8(1)
8(1)
8(1)
8(1)
8(1) | | ALH 82100 | 24.3 | CARBONACEOUS C2 | C
A | Α | | 6(2)
7(1) | | ALH 82101 | 29.1 | CARBONACEOUS C30 | A | A/B | | 6(2)
7(1) | | ALH 82102 ALH 82103 ALH 82104 ALH 82105 ALH 82106 ALH 82107 ALH 82109 ALH 82110 ALH 82111 ALH 82112 ALH 82113 ALH 82114 ALH 82115 ALH 82116 ALH 82117 ALH 82118 ALH 82119 | 2529.2
398.8
363.3
35.1
9.2
13.5
47.2
39.3
63.0
28.3
61.2
40.7
48.5
18.4
4.2
110.9
23.9 | H-5 CHONDRITE (IN I H-5 CHONDRITE L-5 CHONDRITE L-6 CHONDRITE UREILITE L-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE L-7 CHONDRITE L-7 CHONDRITE L-7 CHONDRITE L-7 CHONDRITE L-7 CHONDRITE L-7 CHONDRITE | B
A/B
B/C
B/C
B/C
B/C
A/B
C
A/B
A/B
B
B/C | A BA/B AAAAAAABBBBBBBB | | 6(2) 7(1) 7(1) 7(1) 7(1) 7(2) 7(2) 7(2) 7(2) 7(2) 7(2) 7(2) 7(2 | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---
--|--|---|--|-------------|--| | ALH 82120 ALH 82121 ALH 82123 ALH 82124 ALH 82125 ALH 82126 ALH 82127 ALH 82128 ALH 82129 ALH 82130 ALH 82131 ALH 82131 ALH 82133 ALH 82134 ALH 82135 ALH 82136 ALH 82137 ALH 82138 ALH 82137 ALH 82138 ALH 82140 ALH 82141 ALH 82141 ALH 82142 ALH 82141 ALH 82142 ALH 83001 ALH 83005 ALH 83006 ALH 83007 ALH 83007 ALH 83007 ALH 83011 ALH 83011 ALH 83011 ALH 83011 ALH 83015 ALH 83016 ALH 83047 ALH 83047 ALH 83050 ALH 83050 ALH 83067 ALH 83050 ALH 83067 ALH 83067 ALH 83069 ALH 83069 ALH 83069 ALH 83069 ALH 83069 ALH 83100 83108 | 7.2
2.4
142.0
110.8
25.8
178.4
139.9
5.2
14.6
1.0
9.7
212.1
4.6
1.0
9.7
212.1
4.8
10.0
20.3
7.3
1568.6
1321.8
813.9
227.0
230.2
246.3
246.3
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272.0
272. | H-5 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE H-4 CHONDRITE H-4 CHONDRITE H-5 CHONDRITE UREILITE CARBONACEOUS C2 E-4 CHONDRITE H-5 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE L-6 L-7 CHONDRITE L-7 CHONDRITE L-8 CHONDRITE L-9 CHONDRITE L-9 CHONDRITE L-10 CHONDRITE L-11 CHONDRITE L-2 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE L-4 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE L-6 CHONDRITE L-7 CHONDRITE L-7 CHONDRITE L-8 CHONDRITE L-9 CHONDRITE L-9 CHONDRITE L-10 CHONDRITE L-10 CHONDRITE L-11 CHONDRITE L-12 CHONDRITE L-2 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE L-4 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE L-6 CHONDRITE L-7 CHONDRITE L-7 CHONDRITE L-8 CHONDRITE L-9 CHONDRITE L-9 CHONDRITE L-10 CHONDRITE L-11 CHONDRITE L-2 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE L-4 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE L-6 CHONDRITE L-7 CHONDRITE L-7 CHONDRITE L-8 CHONDRITE L-9 CHONDRITE L-9 CHONDRITE L-10 CHONDRITE L-11 CHONDRITE L-12 CHONDRITE L-13 CHONDRITE L-14 CHONDRITE L-15 L-16 CHONDRITE L-17 CHONDRITE L-17 CHONDRITE L-17 CHONDRITE L-17
CHONDRITE L-18 CHONDRIT | BABBCCBA/SBBABBBBCCCCCBBBBA/BCBBBABCABAA/ABBBAACCAAAABABAAACCAAAABABAAA | ABAAABAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAA | | 7(2)
7(2)
7(2)
7(2)
7(2)
7(2)
7(2)
7(2) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian Newsletter | |------------------------|-----------------------|-------------------------------------|------------------------------|--------------------------------------|--| | ALH 84001
ALH 84002 | 1930.9
7554.0 | DIOGENITE
L-6 CHONDRITE | A/B
B | B
A/B | 8(2)
9(2) | | ALH 84003
ALH 84004 | 3088.7
9000.0 | H-5 CHONDRITE
H-4 CHONDRITE | A/B
B | A
B
A
B | 9(2)
8(2) | | ALH 84005 | 12000.0 | L-5 CHONDRITE | A/B | Ä | 9(1) | | ALH 84006
ALH 84007 | 16000.0
705.6 | H-4,5 CHONDRITE | B/C | | 8(2) | | ALH 84007 | 301.6 | AUBRITE
AUBRITE | A
A/B | A/B
A | 8(2)
8(2) | | ALH 84009 | 335.6 | AUBRITE | Α | A
B | 9(2) | | ALH 84010
ALH 84011 | 303.0 | AUBRITE | A | | 9(2) | | ALH 84012 | 138.2
224.7 | AUBRITE
AUBRITE | A
A | A/B
A | 8(2)
9(2) | | ALH 84013 | 159.9 | AUBRITE | A/B | A/B | 9(2) | | ALH 84014 | 49.4 | AUBRITE | A/B | A/B
B | 9(2) | | ALH 84015
ALH 84016 | 263.9
149.7 | AUBRITE
AUBRITE | A
A
A | Δ | 9(2)
9(2)
9(2)
9(2) | | ALH 84017 | 79.8 | AUBRITE | Â | Ā
B/C
B | 9(2) | | ALH 84018 | 81.7 | AUBRITE | Ą | B B | 9(2) | | ALH 84019
ALH 84020 | 93.2
191.1 | AUBRITE
AUBRITE | A
A/B | A/B
A | 9(2)
9(2) | | ALH 84021 | 35.7 | AUBRITE | Ä | Ĉ | 9(2) | | ALH 84022 | 12.5 | AUBRITE | Α | A | 9(2) | | ALH 84023
ALH 84024 | 262.4
194.4 | AUBRITE
AUBRITE | A
A | A | 9(2)
9(2) | | ALH 84025 | 4.6 | ACHON. (UNIQUE) | Ã/B | Â | 8(2) | | ALH 84027 | 8.0 | LL-7(?) CHONDRITE | B [´]
A | A
C
A
A
A
B
A | 8(2)
8(2) | | ALH 84028
ALH 84029 | 735.9
119.8 | CARBONACEOUS C3V
CARBONACEOUS C2 | A
A | A
B | 8(2)
8(2) | | ALH 84030 | 6.2 | CARBONACEOUS C2 | Â | B/C | 8(2) | | ALH 84031 | 12.5 | CARBONACEOUS C2 | Α | В | 8(2) | | ALH 84032
ALH 84033 | 7.9
60.4 | CARBONACEOUS C2
CARBONACEOUS C2 | A | A
B
A | 8(2) | | ALH 84034. | 44.1 | CARBONACEOUS C2 | A
A | A A | 8(2)
8(2) | | ALH 84035 | 3.2 | CARBONACEOUS C2 | Α | Α | 8(2)
9(2) | | ALH 84036 | 2.8 | CARBONACEOUS C2 | A | A | 9(2) | | ALH 84037
ALH 84038 | 3.0
12.3 | CARBONACEOUS C3V
CARBONACEOUS C4 | B
A | A
A | 9(2)
9(2) | | ALH 84039 | 12.3
32.8 | CARBONACEOUS C2 | A/B | Â | 9(2) | | ALH 84040 | 28.7
1.3 | CARBONACEOUS C2 | A | В | 9(2)
9(2)
9(2)
9(2)
9(2) | | ALH 84041
ALH 84042 | 1.3
51.3 | CARBONACEOUS C2
CARBONACEOUS C2 | A
A
A
A
A
A/B | A
A
B
B
B
B | 9(2)
8(2) | | ALH 84043 | 51.3
16.8
147.4 | CARBONACEOUS C2 | Â | В | 8(2)
9(2)
8(2)
9(2)
9(2)
9(2) | | ALH 84044 | 147.4 | CARBONACEOUS C2 | A | | 8(2) | | ALH 84045
ALH 84046 | 11.4
1.5 | CARBONACEOUS C2
CARBONACEOUS C2 | Α Δ | A/B
A | 9(2)
9(2) | | ALH 84047 | 4.4 | CARBONACEOUS C2 | Â/B | B | 9(2) | | ALH 84048 | 12.6
29.4 | CARBONACEOUS C2 | Α | В | 9(2)
9(2) | | ALH 84049
ALH 84050 | 29.4
3.2 | CARBONACEOUS C2
CARBONACEOUS C2 | A
A | B
B | 9(2)
9(2) | | ALH 84051 | 34.3 | CARBONACEOUS C2 | A/B | A
B
B
B
B
A
A
B | 9(2) | | ALH 84052 | 10.5 | LL-6 CHONDRITE | A/B | A | 9(2)
9(2)
9(2) | | ALH 84053
ALH 84054 | 5.2
19.4 | CARBONACEOUS C2
CARBONACEOUS C2 | A
A | A | 9(2)
9(2) | | ALH 84054
ALH 84055 | 6900.5 | H-5 CHONDRITE | B | B | 9(1) | | ALH 84056 | 2140.3 | L-6 CHONDRITE | A
B
B
B/C | A/B | 9(1)
9(1) | | ALH 84057 | 368.2 | L-6 CHONDRITE | B/C | Α | 9(1) | | Sample | Wejght | 01 (5) 1 | lla a tha sa tha a | Functuaina | Smithconian | Nowslatton | |---|---
---|--|-----------------------|-------------|---| | Number | (g) | Classification | weathering | rracturing | Smithsonian | Hewstercer | | ALH 84059 ALH 84060 ALH 84061 ALH 84062 ALH 84063 ALH 84065 ALH 84066 ALH 84066 ALH 84067 ALH 84069 ALH 84070 ALH 84071 ALH 84073 ALH 84073 ALH 84073 ALH 84075 ALH 84076 ALH 84077 ALH 84081 ALH 84081 ALH 84082 ALH 84083 ALH 84083 ALH 84084 ALH 84085 ALH 84087 ALH 84089 ALH 84089 ALH 84091 | 2002.5
856.9
338.4
958.6
1889.1
1136.3
7597.5
1889.1
1136.3
7977.2
630.6
757.8
289.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8
201.8 | L-6 CHONDRITE H-4 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-5 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-7 CHONDRITE H-8 CHONDRITE H-9 CHONDRITE H-9 CHONDRITE H-10 CHONDRITE H-11 CHONDRITE H-2 CHONDRITE H-2 CHONDRITE H-3 CHONDRITE H-4 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-7 CHONDRITE H-8 CHONDRITE H-9 CHONDRITE H-10 CHONDRITE H-11 CHONDRITE H-2 CHONDRITE H-2 CHONDRITE H-3 CHONDRITE H-3 CHONDRITE H-5 | BBBBAABABCBAABBBACBBBAACBBBBAAABBCBABCAABBBBABBBABCBBBBACCBBBBACCBBBBACCBBBBACCBBBBBACCBBBACCBBBACCBBBBACCBBBBACCBBBACCBBBACCBBBACCBBBBACCBBACCBBBACCBBACCBBBACCBBBACCBACCBBACCBBACCBACCBBACCBACCBBACCBACCBACCBACCBACCBACCBACCBACCBACCBACCBACCBACCBACCBACCBACCBACCBACCBACCBACCACACCBACCACC | c c c c c c | | 9(1)
9(1)
9(1)
9(1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
9(1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1 | | Sample
Number | Weight
(g) | Classification W | <i>l</i> eath eri ng | Fracturing | Smithsonian | Newsletter |
--|--|---|---|--|----------------|--| | ALH 84151
ALH 84153
ALH 84165
ALH 84167
ALH 84168
ALH 84177
ALH 84178
ALH 84184
ALH 84185
ALH 84185
ALH 84191
ALH 84296
ALH 84216
ALH 84216
ALH 84257
ALH 84257
ALH 84250
ALH 84252
ALH 84252
ALH 84252
ALH 84254
ALH 84254
ALH 84254
ALH 84254
ALH 85001
ALH 85001
ALH 85005
ALH 85007
ALH 85007
ALH 85009
ALH 85009
ALH 85013
ALH 85013
ALH 85015 | 112.4
242.9
88.6
94.7
150.7
14.2
39.3
0.4
42.1
4.8
13.0
15.5
12.4
32.3
18.9
10.0
11.3
15.3
137.6
212.3
437.7
189.0
82.1
46.6
130.4
75.2 | H-6 CHONDRITE H-6 CHONDRITE IRON-OCTAHEDRITE L-5 CHONDRITE L-6 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE CARBONACEOUS C2 LL-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE L-6 CARBONACEOUS C2 | BBB CBBBBBCCAAABCBBBBBBBCCAAAAAAAAAAAAA | AAA BAABABBAAAABAAAAAAAAAAAAAAAAAAAAAA | | 99999999999999999999999999999999999999 | | BTNA78001
BTNA78002 | 160.7
4301.0 | L-6 CHONDRITE L-6 CHONDRITE | B
B | B
A | 24,19
24,19 | 3(2)
4(1)
3(1) | | BTNA78004 | 1079.0 | LL-6 CHON.(BRECCIAT | | A | 24,19 | 4(1)
3(1) | | BTNA78005
DOM 85500
DRPA78001 | 81.8
59.8
15200.0 | H-6 CHONDRITE
H-5 CHONDRITE
IRON-GROUP IIB | B
B | B
A/B | · | 4(1)
9(2)
9(3)
2(1) | | DRPA78002 | 7188.0 | IRON-GROUP IIB | | | 24,19 | 2(1) | | DRPA78003 | 144.2 | IRON-GROUP IIB | | | | 2(1) | | DRPA78004 | 133.6 | IRON-GROUP IIB | | | 24,19 | 2(1) | | DRPA78005 | 18600.0 | IRON-GROUP IIB | | | 24,19 | 2(1)
4(1) | | DRPA78006 | 389.3 | IRON-GROUP IIB | | | 24,19 | 2(1)
4(1) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|--|---|---|---|----------------------------------|--| | DRPA78007 | 11800.0 | IRON-GROUP IIB | | | | 2(1)
3(1) | | DRPA78008 | 59400.0 | IRON-GROUP IIB | | | 24,19 | 2(1)
3(1)
4(1) | | DRPA78009 | 138100.0 | IRON-GROUP IIB | | | 24,19 | 2(1)
4(1) | | EETA79001 | 7942.0 | SHERGOTTITE | Α | Α | 24,19 | 3(3)
4(1)
9(1) | | EETA79002 | 2843.0 | DIOGENITE | В | В | 24,19 | 3(3)
4(1) | | EETA79003
EETA79004 | 435.6
390.3 | L-6 CHONDRITE
EUCRITE | B
B | B
B | 24,19
24,19 | 4(1)
3(3)
4(1) | | EETA79005 | 450.9 | EUCRITE (POLYMICT |) A | В | 24,19 | 3(3)
4(1) | | EETA79006 | 716.4 | HOWARDITE | В | В | 24,19 | 3(3)
4(1)
4(2) | | EETA79007
EETA79009
EETA79010
EETA79011 | 199.9
140.3
287.3
86.4 | H-5 CHONDRITE
L-5 CHONDRITE
L-6 CHONDRITE
EUCRITE (POLYMICT | B
B
B | B
B
C
B | 24,19
24,19
24,19
24,19 | 4(1)
4(1)
4(1)
3(3)
4(1) | | EET 82600 | 247.1 | HOWARDITE | Α | В | | 6(2)
7(1) | | EET 82601 EET 82603 EET 82604 EET 82605 EET 82606 EET 82607 EET 82609 EET 82610 EET 82611 EET 82612 EET 82613 EET 82614 EET 82615 EET 82615 EET 82616 EET 83200 EET 83200 EET 83200 EET 83200 EET 83203 EET 83204 EET 83205 EET 83206 EET 83206 EET 83207 EET 83207 EET 83209 EET 83210 EET 83211 | 149.5
1824.1
8210.0
1570.6
624.6
981.9
165.3
94.5
325.5
42.1
12.6
31.6
4.2
8.4
29.3
2.1
778.8
1059.8
1213.2
545.6
376.6
470.8
461.9
1238.3
263.0
520.0
425.7 | L-3 CHONDRITE H-4 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE H-4 CHONDRITE L-4 CHONDRITE L-4 CHONDRITE L-4 CHONDRITE L-4 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE L-6 | B/C
B B/B C C B/B
B B A B B/C C B/B B/C B/C B/C B/C B/C B/C B/C | A B A B A A A A A A B A B B A B B A B B B A B | | 7(2) 7(1) 7(1) 7(1) 7(1) 7(1) 7(1) 7(2) 7(2) 7(2) 7(2) 7(2) 7(2) 7(2) 8(1) 8(1) 8(1) 8(1) 8(1) 8(1) 8(1) 8(1 | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing S | mithsonian Newsletter | |---|--
---|---|--|---| | EET 83212 EET 83213 EET 83214 EET 83215 EET 83216 EET 83217 EET 83218 EET 83220 EET 83221 EET 83222 EET 83223 EET 83224 EET 83225 EET 83226 EET 83227 EET 83228 EET 83229 EET 83230 EET 83231 EET 83231 EET 83231 EET 83232 EET 83234 EET 83235 EET 83234 EET 83234 EET 83236 EET 83237 EET 83236 EET 83237 EET 83236 EET 83240 EET 83241 EET 83241 EET 83241 EET 83244 EET 83244 EET 83244 EET 83244 EET 83244 | 402.1
2727.0
1397.5
510.4
789.9
374.7
191.9
243.3
330.9
317.0
218.6
44.0
33.1
1973.0
1206.0
312.9
530.0
66.4
211.2
180.6
254.6
882.7
382.1
282.3
247.8
203.3
282.1
288.1
384.1
59.0
48.3
22.5 | EUCRITE (POLYMICT L-3 CHONDRITE L-6 CARBONACEOUS C2 UREILITE CARBONACEOUS C2 EUCRITE (POLYMICT) EUCRITE (POLYMICT) EUCRITE (POLYMICT) IRON-ATAXITE EUCRITE (POLYMICT) | B
B
B
B
B
B
B
B
B
B
B
B
B
B
B | BAACABAAACBBBBBBBBBBBAA/BBAA/BBAAABBAAA | 8(1)
8(1)
8(1)
8(1)
9(1)
9(1)
9(1)
9(1)
9(1)
8(1)
8(1)
8(1)
8(1)
8(1)
8(1)
8(1)
8 | | EET 83248 EET 83250 EET 83251 EET 83252 EET 83253 EET 83260 EET 83267 EET 83267 EET 83271 EET 83274 EET 83276 EET 83283 EET 83283 EET 83285 EET 83285 EET 83285 EET 83285 EET 83290 EET 83290 EET 83295 EET 83295 EET 83303 EET 83305 | 39.2
11.5
261.4
183.7
44.1
15.4
23.9
27.7
8.5
67.3
82.7
48.9
57.3
3.2
7.8
1.4
9.3
27.9
11.8
167.0 | H-3 CHONDRITE CARBONACEOUS C2 EUCRITE (POLYMICT) L-6 CHONDRITE L-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE L-5 CHONDRITE L-6 L-7 CHONDRITE L-8 CHONDRITE L-9 CHONDRITE L-9 CHONDRITE L-10 CHONDRITE L-10 CHONDRITE L-11 CHONDRITE L-12 CHONDRITE L-13 CHONDRITE L-14 CHONDRITE L-15 CHONDRITE L-15 CHONDRITE L-15 CHONDRITE L-15 CHONDRITE | B
B
B/C
B/C
A/B
A/B
B
B B
B/C
B/C
B/C | A
C
A
A
A
C
A
A
B
B
B
B
B
A/C | 8(2)
9(1)
8(1)
8(1)
9(1)
9(2)
9(2)
9(2)
9(2)
9(2)
9(2)
9(1)
9(1)
9(1)
9(1)
9(1) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian Newsl | etter | |---|--|--|---|--|-------------------|--| | EET 83307 EET 83308 EET 83309 EET 83312 EET 83324 EET 83329 EET 83329 EET 83335 EET 83363 EET 83364 EET 83364 EET 83369 EET 83376 EET 84300 EET 84301 EET 84302 EET 84303 EET 84304 EET 84305 EET 84306 EET 84307 EET 84306 EET 84306 EET 84307 84308 GRO 85200 GRO 85202 ILD 83500 LEW 85309 LEW 85311 LEW 85317 LEW 85317 LEW 85317 LEW 85320 MBRA76001 | 4.8
136.9
60.8
93.0
54.9
14.3
142.8
67.7
188.6
226.9
299.2
184.7
204.9
79.3
15.2
203.3
72.2
75.1
59.6
57.5
152.2
210.3
114.5
408.0
40.8
54.1
199.5
710224.0
1096.0 | E-4 CHONDRITE L-5 CHONDRITE ACHON. (UNIQUE) L-6 CHONDRITE L-4 CHONDRITE H-5 CHONDRITE L-4 CHONDRITE IRON-OCTAHEDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-7 CHONDRITE L-8 CHONDRITE L-8 CHONDRITE L-9 CHONDRITE L-9 CHONDRITE L-9 CHONDRITE L-10 CHONDRITE L-10 CHONDRITE L-11 CHONDRITE L-12 CHONDRITE L-13 CHONDRITE L-14 CHONDRITE L-15 CHONDRITE L-16 CHONDRITE L-17 CHONDRITE L-18 CHONDRITE L-19 CHONDRITE L-19 CHONDRITE L-19 CHONDRITE L-20 CARBONACEOUS C2 C3 CARBONACEOUS C4 CARBONACEOUS C4 CARBONACEOUS C4 CARBONACEOUS C4 CARBONACEOUS C5 CARBONACEOUS C4 CARBONACEOUS C5 CARBONA | CBCBA/BB A/BBAA CBBCBA/CCBB/BBBAA/BBBBA/BBBA/ | BABBABBA AAAAA A BBAABAAAC AAAAABBBBABB
B B CCC | 23,12 | 0(1)
0(1)
0(1)
1(1)
1(1)
1(1)
1(1)
1(1) | | MBRA76002
META78001 | 13773.0
624.4 | H-6 CHONDRITE
H-4 CHONDRITE | B
B/C | B
B | 24,19 | 4(1)
3(1) | | META78002 | 542.2 | L-6 CHONDRITE | В | Α | | 4(1)
3(1) | | META78003 | 1726.0 | L-6 CHONDRITE | В | В | 24,19 | 3(2)
4(1) | | META78004 %
META78005 | 30.3
172.0 | L-6 CHONDRITE
L-6 CHONDRITE | B B | A
B | 24,19 | 9(2)
3(2)
4(1) | | META78006 | 409.6 | H-6 CHONDRITE | C | В | 24,19 | 3(1)
4(1) | | META78007 | 174.8 | H-6 CHONDRITE | B/C | В | 24,19 | 3(1)
3(3)
4(1) | | Sample
Number | Weight
(g) | Classification \ | Weathering | Fracturing | Smithsonian | Newsletter | |---|---
--|--|---|-------------|--| | META78008 | 125.5 | UREILITE | В | В | | 3(1)
9(2) | | META78009 %
META78010 | 28.8
233.5 | H-5 CHONDRITE
H-5 CHONDRITE | B
B | A
A | 24,19 | 9(2)
9(2)
3(2)
4(1)
9(2)
3(1)
9(2)
3(1)
9(2)
3(1) | | META78011
META78012 | 115.7
86.3 | H-5 CHONDRITE
H-5 CHONDRITE | C
B | A
B | | 9(2)
3(1) | | META78013 %
META78014 % | 131.9
100.5 | H-6 CHONDRITE
H-6 CHONDRITE | B
C | B
A | | 9(2)
3(1) | | META78015 % | 36.8 | L-5 CHONDRITE | В | A | | 3(1) | | META78016 % | 114.1 | H-6 CHONDRITE | B/C | В | | 9(2)
3(1) | | META78017 META78018 % META78019 % META78020 META78021 % META78022 % META78023 META78024 % META78025 % META78026 META78027 META78028 | 46.9
81.9
91.1
63.7
22.6
48.5
55.6
22.2
75.2
52.5
20657.0 | H-6 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE L-6 CHONDRITE H-6 L-6 CHONDRITE | B/C
B/B
C
B/C
B/C
C
B
B/C
C
B | A A B A A B B A B B B B B B B B B B B B | 26 22 | 9(2)
9(2)
9(2)
9(2)
9(2)
9(2)
9(2)
9(2) | | OTTA80301
PCA 82500 | 35.5
90.9 | H-3 CHONDRITE
CARBONACEOUS C4 | B/C
B | B
C | 26,23 | 5(1)
6(2)
7(1)
7(2) | | PCA 82501 ' | 54.4 | EUCRITE (UNBRECCIA | • | A | | 6(2)
7(1) | | PCA 82502 PCA 82503 PCA 82504 PCA 82505 PCA 82506 PCA 82507 PCA 82509 PCA 82510 PCA 82511 PCA 82512 PCA 82513 PCA 82513 PCA 82514 PCA 82515 PCA 82516 PCA 82517 PCA 82517 PCA 82519 PCA 82520 PCA 82521 | 890.4
8308.0
3093.6
3085.5
5316.0
479.8
389.3
285.6
254.2
149.0
55.2
239.1
129.8
6.9
16.0
41.3
21.9
125.0
22.7
1.4 | L-6 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE UREILITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-7 CHONDRITE L-7 CHONDRITE L-8 CHONDRITE L-9 CHONDRITE L-9 CHONDRITE L-1 CHONDRITE L-1 CHONDRITE L-2 CHONDRITE L-3 CHONDRITE L-4 CHONDRITE L-4 CHONDRITE L-5 CHONDRITE L-6 CHONDRITE L-7 CHONDRITE L-7 CHONDRITE L-8 CHONDRITE L-9 CHONDRITE L-9 CHONDRITE L-1 CHONDRITE L-1 CHONDRITE L-1 CHONDRITE L-2 CHONDRITE L-3 CHONDRITE L-3 CHONDRITE | TED) A A/B B/B A/B A/B B A/B B B/C B B/C B B/C C | A BBBAA/BAAAAABBAAAAAAAAAAAAAAAAAAAAAAA | | 6(2) 7(1) 7(1) 7(1) 7(1) 7(1) 7(1) 7(1) 7(2) 7(2) 7(2) 7(2) 7(2) 7(2) 7(2) 7(2 | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsl e tter | |---|--|---|---|---------------------------------|---|---| | PCA 82522
PCA 82523
PCA 82524
PCA 82525
PCA 82526
PCA 82527
PCA 82528
PGPA77006 | 45.5
11.5
113.8
40.2
24.9
3.4
51.4
19068.0 | H-5 CHONDRITE H-6 CHONDRITE H-4 CHONDRITE L-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE L-6 CHONDRITE IRON-GROUP IA | B/C
A
A/B
B
B
A
B/C | B
B
B
A
A
B | 24,49 | 7(2)
7(2)
7(2)
7(2)
7(2)
7(2)
7(2)
3(2) | | RKPA78001 | 234.9 | L-6 CHONDRITE | С | В | 23,12
24,19 | 3(1)
3(1) | | RKPA78002 | 8483.0 | H-4 CHONDRITE | В | A/B | 24,19 | 3(2) | | RKPA78003 | 1276.0 | L-6 CHONDRITE | , C | В | 24,19 | 3(1) | | RKPA78004 | 166.9 | H-4 CHONDRITE | , A , | A | 24,19 | 3(1) | | RKPA78005 % RKPA79001 RKPA79002 RKPA79003 RKPA79004 RKPA79008 RKPA79012 RKPA79012 RKPA79013 RKPA79014 RKPA79015 RKPA80201 | 28.7
3006.0
203.6
182.2
370.9
73.0
54.7
12.8
11.0
77.7
10022.0 | H-5 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE H-6 CHONDRITE H-5 CHONDRITE L-3 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE | B
B
B
B/C
B/C
B/C
A/B | B C B A B B B B B A A | 24,19
24,19
24,19
24,19
24,19
24,19
24,19
24,19
26,49 | 9(2)
4(1)
4(1)
4(1)
4(1)
4(1)
4(1)
4(1)
4(1 | | RKPA80202 | 544.5 | L-6 CHONDRITE | В | Α | 26,23 | 5(1)
4(2) | | RKPA80203
RKPA80204 | 3.8
15.5 | H-6 CHONDRITE
EUCRITE | C
A | A
A | 26,23 | 5(1)
5(1)
4(2)
5(1) | | RKPA80205
RKPA80206
RKPA80207
RKPA80208
RKPA80210
RKPA80211
RKPA80211
RKPA80213
RKPA80214
RKPA80215
RKPA80216 | 53.8
46.6
17.7
10.2
9.7
10.6
2.1
19.1
4.9
9.0
44.3 | H-3 CHONDRITE H-6 CHONDRITE L-3 CHONDRITE H-6 CHONDRITE L-5 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE L-6 CHONDRITE L-4 CHONDRITE | B
C
B
C
B/C
C
B/C
C
B | B
B
B
B
B
B
B | 26,23
26,23
26,23
26,23
26,23 | 5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
5(1) | | RKPA80217
RKPA80218
RKPA80219
RKPA80220
RKPA80221
RKPA80222
RKPA80223
RKPA80224 | 7.8
6.7
21.5
124.5
51.9
7.0
25.1
8.0 | H-5 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE H-5 CHONDRITE H-6 CHONDRITE LL-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE EUCRITE (UNBRECC | C
C
B
C
C
B
C | A
A
B/C
B/C
B
A | 26,23
26,23
26,23
26,23 | 5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
4(2)
5(1) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |---|---|---|--|---------------------------------------|---|--| | RKPA80225
RKPA80226
RKPA80227
RKPA80228
RKPA80229
RKPA80230
RKPA80231 | 8.3
160.3
7.7
11.1
14.1
58.2
238.1 | L-6 CHONDRITE IRON-OCTAHEDRITE H-5 CHONDRITE L-5 CHONDRITE MESOSIDERITE H-5 CHONDRITE H-6 CHONDRITE | C
B/C
C
C
B
C | A
B
B/C
B
B/C | 26,49
26,23
26,49
26,23 | 5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
4(2) | | RKPA80232
RKPA80233 | 80.1
413.5 | H-4 CHONDRITE
H-5 CHONDRITE | B
B/C | A
B | 26,23
26,23 | 5(1)
5(1)
4(2) | | RKPA80234
RKPA80235 | 136.2
261.2 | LL-5 CHONDRITE
LL-6 CHONDRITE | B
A/B | B
B | 26,23
26,23 | 5(1)
5(1)
4(2) | | RKPA80236
RKPA80237
RKPA80239
RKPA80240
RKPA80241
RKPA80242
RKPA80244
RKPA80244
RKPA80245
RKPA80246
RKPA80247
RKPA80247
RKPA80247
RKPA80250
RKPA80250
RKPA80250
RKPA80251 | 15.6
22.2
18.4
5.6
61.4
0.6
7.3
3.4
14.2
36.7
5.8
1.1
11.3
9.7
3.9
29.1
11.2
4.6
68.5
6.7
153.2 | H-5 CHONDRITE H-4 CHONDRITE LL-6 CHONDRITE UREILITE H-5 CHONDRITE CARBONACEOUS C3V L-4 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE LL-6 CHONDRITE H-5 CHONDRITE LL-6 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-7 CHONDRITE L-8 CHONDRITE L-9 CHONDRITE L-9 CHONDRITE L-10 CHONDRITE L-11 CHONDRITE L-12 CHONDRITE L-13 CHONDRITE L-13 CHONDRITE | B/C
C A/B
B C B/C
C C A/B
B/C
B/C
B/C
B/C
B/C
B/C
B/C
B/B | B B A B B A B B C B A A A B A A B B A | 26,23
26,23
26,23
26,23
26,23
26,23
26,23
26,23
26,23 | 5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
5(1) | | RKPA80257
RKPA80258
RKPA80259
RKPA80260
RKPA80261
RKPA80262
RKPA80264
RKPA80265
RKPA80265
RKPA80266
RKPA80267
RKPA80267
RKPA80267
RKPA80267
TIL 82400
TIL 82401
TIL 82401
TIL 82402
TIL 82403 | 8.5
4.3
20.2
7.5
61.6
32.1
16.7
23.9
7.8
9.8
24.2
3.4
220.8
281.6
476.0
49.8
321.6
1115.7
152.0 | H-5 CHONDRITE MESOSIDERITE E-5 CHONDRITE H-5 CHONDRITE L-6 CHONDRITE MESOSIDERITE L-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE H-6 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE L-5 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-6 CHONDRITE L-7 CHONDRITE L-8 CHONDRITE L-9 CHONDRITE L-4 CHONDRITE L-4 CHONDRITE |
B/C
B/C
B/C
C
B/C
B/C
B/C
B/C
B/B
A/B
A/B
A/B
B
B | B B B B B B B B B A A A B A A | 26,49
26,23
26,49
26,23
26,23 | 5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
5(1) | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | Smithsonian | Newsletter | |------------------|---------------|----------------|------------|------------|-------------|-------------------| | TIL 82407 | 220.8 | L-4 CHONDRITE | B/C | Α | | 7(1) | | TIL 82408 | 80.1 | LL-3 CHONDRITE | B | A/B | | 7(2) | | TIL 82409 | 230.9 | H-5 CHONDRITE | В | A | | 7(1) | | TIL 82410 | 18.8 | DIOGENITE | Α | В | | 7(2) | | TIL 82411 | 179.5 | L-4 CHONDRITE | A/B | Α | | 7(1) | | TIL 82412 | 35.2 | H-5 CHONDRITE | C' | В | | 7(2) | | TIL 82413 | 18.4 | H-5 CHONDRITE | Ċ | В | | 7(2) | | TIL 82414 | 15.4 | H-5 CHONDRITE | B | Ã | | 7(2) | | TIL 82415 | 70.2 | H-5 CHONDRITE | Ā/B | A | | 7(2) | | TYR 82700 | 892.1 | L-4 CHONDRITE | B | Ä | | $7(\overline{1})$ | Table 2. Comprehensive Listing of Meteorites of Special Petrologic Types ## Achondrites | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | ı% Fa | % Fs | |--|--|---|---|---|---------------------|---| | ALHA81187
ALH 84025
EET 83309 | 40.0
4.6
60.8 | ACHON. (UNIQUE)
ACHON. (UNIQUE)
ACHON. (UNIQUE) | B/C
A/B
C | B
A
B | 4
32-33
11-21 | 6.5
11
4-14 | | EET 84302 | 59.6 | ACHONDRITE | B/C | В | 5 | 8 | | ALHA81005 | 31.4 | ANORTHOSITIC BRECC | IA A/B | Α | 11-40 | 7-47 | | ALHA78113
ALH 83009
ALH 84007
ALH 84008
ALH 84010
ALH 84011
ALH 84012
ALH 84013
ALH 84014
ALH 84015
ALH 84016
ALH 84017
ALH 84018
ALH 84019
ALH 84020
ALH 84020
ALH 84021
ALH 84021
ALH 84023
ALH 84024 | 298.6
1.7
705.6
301.6
335.6
303.0
138.2
224.7
159.9
49.4
263.9
149.7
79.8
81.7
93.2
191.1
35.7
12.5
262.4
194.4 | AUBRITE | A/B
A/B
A/B
A A A/B
A A A A A A A A A A A A A A A A A A A | A
A
A
B
A
B
A/B
A/B
B
A/C
A
A
A | | 000000000000000000000000000000000000000 | | ALH 83015 | 3.1 | AUBRITE (?) | A/B | Α | | | | EET 83235 | 254.6 | BASALTIC ACHON. | В | В | | | | ALHA77256
ALH 84001
ALH 85015
EETA79002
EET 83246
EET 83247
LEW 85313
TIL 82410 | 676.2
1930.9
3.2
2843.0
48.3
22.5
191.2
18.8 | DIOGENITE DIOGENITE DIOGENITE DIOGENITE DIOGENITE DIOGENITE DIOGENITE DIOGENITE DIOGENITE | A/B
A/B
B
A/B
B/C
B | A
B
A
B
A/B
B
B
B | 39
24-25 | 23
27
25
22
28-35
24 | | ALHA81208 | 1.6 | DIOGENITE/MESOSIDE | RITE C | В | | 25 | | ALHA81009
ALHA81012
ALH 85001
EETA79004 | 229.0
36.7
212.3
390.3 | EUCRITE
EUCRITE
EUCRITE
EUCRITE | A
A/B
A/B
B | A
A
A/B
B | | 30-63
33-62
32
30-61 | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing % | % Fa 5 | % Fs | |---|---|---|---|--|------------------------------|---| | EET 83236
LEW 85300
LEW 85302
LEW 85303
LEW 85305
RKPA80204 | 6.4
210.3
114.5
408.0
40.8
15.5 | EUCRITE EUCRITE EUCRITE EUCRITE EUCRITE EUCRITE EUCRITE | B
A/B
A/B
A/B
A | A
A/B
A
A
A | | 32-63
24-59
30-62
31-57
52-57 | | ALHA81001 | 52.9 | EUCRITE (ANOMALOUS | S) A | В | | 59 | | TIL 82403 | 49.8 | EUCRITE (BRECCIATE | ED) A | Α | | 43-58 | | ALHA76005
ALHA77302
ALHA78040
ALHA78158
ALHA78165
ALHA79017
ALHA80102
ALHA81006
ALHA81007
ALHA81008
ALHA81010
EETA79005
EETA79011
EET 83212
EET 83227
EET 83227
EET 83231
EET 83231
EET 83234
EET 83234
EET 83234 | 317.3
235.5
211.7
656.0
15.1
20.9
310.0
471.2
254.9
163.5
43.8
219.1
450.9
86.4
402.1
1973.0
1206.0
312.9
66.4
211.2
180.6
261.4
57.3 | EUCRITE (POLYMICT) | A A A A A A A A A B B B B B B B B B B B | A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B | | 37-57
37-64
33-52
40-68
40-68
37-61
28-53
34-52
35-60
38-55
32-59
31-57
30-61 | | PCA 82501
PCA 82502
RKPA80224 | 54.4
890.4
8.0 | EUCRITE (UNBRECCI
EUCRITE (UNBRECCI
EUCRITE (UNBRECCI | ATED) A | A
A
A | | 41-57
36-61
54 | | ALHA81011 | 405.7 | EUCRITIC BRECCIA | A/B | A | | 33-60 | | ALHA78006
EETA79006
EET 82600
EET 83376 | 8.0
716.4
247.1
79.3 | HOWARDITE
HOWARDITE
HOWARDITE
HOWARDITE | A
B
A
A/B | A
B
B
A/B | | 25-61
19-57
22-53
21-49 | | ALHA77005
EETA79001 | 482.5
7942.0 | SHERGOTTITE
SHERGOTTITE | A
A | Α | 28
23-27 | 23
16-67 | | ALHA81313 | 0.5 | SHERGOTTITE (?) | | | | 38 | | ALHA77257
ALHA78019
ALHA78262
ALHA81101
ALH 82106 | 1995.7
30.3
26.2
119.2
35.1 | UREILITE
UREILITE
UREILITE
UREILITE
UREILITE | A
B/C
B/C
A/B
B | B
C
A
B | 13
22
22
10-22
3 | 12
18
19 | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturi | ng % Fa | % Fs | |------------------------|---------------|----------------------|------------|----------|----------|----------| | ALH 82130
ALH 83014 | 44.6
1.3 | UREILITE
UREILITE | B | A | 3
18 | 4
15 | | ALH 84136 | 83.5 | UREILITE | B | Ã/B | 0-5 | 4 | | EET 83225
META78008 | 44.0
125.5 | UREILITE
UREILITE | B/C
B | B
B | 22 | 13 | | PCA 82506
RKPA80239 | 5316.0
5.6 | UREILITE
UREILITE | A/B
B | A
B | 21
16 | 18
15 | ## Irons | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing % F | a % Fs | |---|---|--|------------|----------------|--------| | ALHA81013
ALHA81014 | 17727.0
188.2 | IRON
IRON | | | | | ALHA80104
EET 83230
ILD 83500 | 882.0
530.0
2523.0 | IRON-ATAXITE
IRON-ATAXITE
IRON-ATAXITE | | | | | ALHA77255 | 765.1 | IRON-ATAXITE (ANO | M) | | | | ALHA76002
ALHA77250
ALHA77263
ALHA77283
ALHA77289
ALHA77290
PGPA77006 | 307.0
10555.0
1669.0
10510.0
2186.0
3784.0
19068.0 | IRON-GROUP IA | | | | | ALHA78100 | 84.9 | IRON-GROUP IIA | | | | | DRPA78001
DRPA78002
DRPA78003
DRPA78004
DRPA78005
DRPA78006
DRPA78007
DRPA78008
DRPA78009 | 15200.0
7188.0
144.2
133.6
18600.0
389.3
11800.0
59400.0 | IRON-GROUP IIB | | | | | ALHA78252 | 2789.0 | IRON-GROUP IVA | | | | | ALH 84165
EET 83245
EET 83333
EET 83390
EET 84300
RKPA80226 | 94.7
59.0
188.6
15.2
72.2
160.3 | IRON-OCTAHEDRITE IRON-OCTAHEDRITE IRON-OCTAHEDRITE IRON-OCTAHEDRITE IRON-OCTAHEDRITE IRON-OCTAHEDRITE | | | | ## **Enstatite Chondrites** | Sample
Number | Weight
(g) | Classification | Weathering | Fracturi | ng % Fa | % Fs | |---|---|---|-------------------------------------|-----------------------------------|-----------------|--| | ALH 84170 | 39.2 | E-3 CHONDRITE | В | Α | 0.6-28 | 0.9-17 | | ALHA81189
ALH 82132
ALH 84188
ALH 84206
ALH 84250
ALH
84254
EET 83307
EET 83322
PCA 82518 | 2.6
5.9
3.1
15.1
10.0
2.0
4.8
14.3
21.9 | E-4 CHONDRITE | C
C
A/B
B
C
A/B
B | B
B/C
B
A
A
B
B | 2
2-5
0.8 | 3
0.4
0.7-3
0.7-6
0.5-4
0.3-4
0.5-5
0.2-2 | | RKPA80259 | 20.2 | E-5 CHONDRITE | B/C | В | | 0-1 | | ALHA81021
ALHA81260 | 695.1
124.1 | E-6 CHONDRITE
E-6 CHONDRITE | A
A/B | B
A/B | | 0-1
.3 | | ALHA77156 @
ALHA77295 @ | 17.7
141.3 | EH-4 CHONDRITE
EH-4 CHONDRITE | B
B | | 0.8
0.8 | 1.5 | # Stony-Irons | Sample
Number | Weight
(g) | Classification | Weathering | Fracturi | ng % Fa | % Fs | |--|---|---|--|--|----------|---| | ALHA77219
ALHA81059
ALHA81098
RKPA79015
RKPA80229
RKPA80246
RKPA80258
RKPA80263 | 637.1
539.5
70.9
10022.0
14.1
5.8
4.3
16,7 | MESOSIDERITE | B
C
C
A/B
C
C
B/C
C | B
B/C
B/C
A
B/C
C
B
B | 26
28 | 24-28
25-32
28
24
24
24
17-21
24 | #### Carbonaceous Chondrites | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | g % Fa | % Fs | |--|---|---|--|---|---|--| | ALHA77306
ALHA78261
ALHA81002
ALHA81312
ALH 82100
ALH 82131
ALH 83016
ALH 83100
ALH 83100
ALH 83102 | 19.9
5.1
14.0
4.7
0.7
24.3
1.0
4.1
3019.0
1786.2
22.3 | CARBONACEOUS C2 | A
A
A/B
A
A
A/B
B/C
A | A
B
A
A
B
B/C
B/C
C
A/B | 1-45
0-50
0-52
0-52
1-35
1-47
0.3
0.3-30 | 1
1-8
0-2
0-2
1-31
1-2 | | ALH 84029
ALH 84030
ALH 84031
ALH 84033
ALH 84034
ALH 84035
ALH 84036
ALH 84039
ALH 84040
ALH 84040 | 119.8
6.2
12.5
7.9
60.4
44.1
3.2
2.8
32.8
28.7
1.3 | CARBONACEOUS C2 | A
A
A
A
A
A
A
A
A | B/C
BABAAAAABBB | 0-2
0-2
0-2
0-2
0-1
0-2
0.5-6
0.7-40
0.4-31 | 2
2
0.7-7
2-13
.8-1.5 | | ALH 84042
ALH 84043
ALH 84044
ALH 84045
ALH 84046
ALH 84047
ALH 84049
ALH 84050 | 51.3
16.8
147.4
11.4
1.5
4.4
12.6
29.4
3.2 | CARBONACEOUS C2 | A
A
A
A
A/B
A
A | B
B
B
A/B
A
B
B
B | 0-2
0-2
.3-2.1 | .7-1.0 | | ALH 84051
ALH 84053
ALH 84054
ALH 84191
ALH 85005
ALH 85007
ALH 85008
ALH 85009
ALH 85013
EET 83224
EET 83226
EET 83250 | 34.3
5.2
19.4
14.0
18.9
82.0
32.1
46.6
130.4
8.6
33.1
11.5
27.2 | CARBONACEOUS C2 | A/B
A
A
A
B
B
A
A/B
A/B
B | B
A
A
B
A/B
B
A/B
B
C
C
A | .5-1.5
.5-36
0.48
0.5-39
0.3-30
0.3-45
0.4-59
0.5-36
0.2-41
0.5-69
0.3-22
.8-1.2 | 5
3
0.8-7
.9-2.2
.9-2.5
.8-1.6
0-1
0.6-10
2-14 | | GRO 85202
LEW 85306
LEW 85309
LEW 85311
LEW 85312 | 6.5
54.1
199.5
31.7 | CARBONACEOUS C2 CARBONACEOUS C2 CARBONACEOUS C2 CARBONACEOUS C2 CARBONACEOUS C2 | A/B
A
A/B
B
B | A
B/C
B/C
B/C | 0.2-33
0.2-41
0.4-36
0.2-45 | .7-5.\$.9-1.5 .9-1.1 .7-1.8 | | ALHA77003
ALHA77029 @
ALH 82101 | 779.6
1.4
29.1 | CARBONACEOUS C30
CARBONACEOUS C30
CARBONACEOUS C30 | A
A/B
A | A
A/B | 4-48
23.0
1-50 | 2-25
2.6
1-10 | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturi | ng % Fa | % Fs | |--|--|--|------------------------------|---------------------------|--|--| | ALH 83108 | 1519.4 | CARBONACEOUS C30 | Α | Α | 0.9-38 | 1-17 | | ALHA81003
ALHA81258
ALH 84028
ALH 84037
ALH 85006
RKPA80241 | 10.1
1.1
735.9
3.0
49.0
0.6 | CARBONACEOUS C3V
CARBONACEOUS C3V
CARBONACEOUS C3V
CARBONACEOUS C3V
CARBONACEOUS C3V | A/B
B
A
B
A
B | A/B
A/B
A
A
B | 0-60
0-28
0-50
0.8-9
0.3-43
1-6 | 1
0-1
2
0.5-12
.9-4.9
1-8 | | ALH 82135
ALH 84038
ALH 84096
ALH 85002
PCA 82500 | 12.1
12.3
293.6
437.7
90.9 | CARBONACEOUS C4 CARBONACEOUS C4 CARBONACEOUS C4 CARBONACEOUS C4 CARBONACEOUS C4 | A
A
A/B
A
B | A
A
A
C | 27
25-30
30
30
31 | 24
22
26 | ## Chondrites - Type 3 | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | ı % Fa | % Fs | |---|--|---|---|-----------------------------------|--|---| | ALHA77299
ALHA78170 +
ALH 82110
EET 83248
EET
83267
OTTA80301
PCA 82520
RKPA80205 | 260.7
20.9
39.3
39.2
27.7
35.5
22.7
53.8 | H-3 CHONDRITE | A
B
B/C
B
B/C
B/C
B | A
B
A
C
B
A/B
B | 11-21
3-36
1-24
3-24
13-23
17-19
15-22
17-20 | 15-20
4-27
3-23
12-20
4-19
2-19
5-13 | | ALHA77011 ALHA77013 @ ALHA77015 ALHA77031 @ ALHA77034 @ ALHA77036 @ ALHA77047 @ ALHA77049 @ ALHA77050 @ ALHA77050 @ ALHA77115 @ ALHA77160 ALHA77160 ALHA77166 @ ALHA77167 ALHA77167 ALHA77166 @ ALHA77176 @ ALHA77176 @ ALHA77175 @ ALHA77175 @ ALHA77175 @ ALHA77175 @ ALHA77175 @ ALHA77176 @ ALHA77178 @ ALHA77178 @ ALHA77185 @ | 291.5
23.0
411.1
0.5
9.3
1.8
8.5
11.4
20.5
7.3
84.2
112.2
154.4
78.6
70.4
24.3
38.1
30.5
138.8
611.2
12.2
23.3
55.4
5.7
28.0 | L-3 CHONDRITE | CBCBCBBBCBBBCCBBCCCCCBBBBBBAAABAAABAAAB | A B B C C C B/C | 4-36
9-28
1-21
n.d.
1-37
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d. | 1-33
1-35
4-24
n.d.
8-9
n.d.
1-28
n.d.
n.d.
n.d.
n.d.
1-37
n.d.
3-41
6-35
n.d.
1-37
n.d. | | ALHA77197 @ ALHA77211 @ ALHA77214 ALHA77215 ALHA77216 ALHA77217 ALHA77241 @ ALHA77244 @ ALHA77252 ALHA77252 ALHA77303 @ ALHA77303 @ ALHA78013 ALHA78017 + ALHA78037 + ALHA78038 ALHA78041 + ALHA78046 ALHA78133 | 20.3
26.7
2111.0
819.6
1470.0
413.2
144.1
39.5
503.6
343.1
744.3
78.6
4.1
2.9
0.5
363.0
117.5
70.0
102.6
59.9 | L-3 CHONDRITE | A/B
B/C
B/C
B/C
B/C
B/C
B/C
B/C
B/C | C
B/C
B/C
C
C | 10-27
n.d.
1-49
22-26
15-35
17-25
n.d.
7-35
22-28
7-23
n.d.
11-45
3-43
7-38
4-42
0-41
8-25
0-28
1-34 | 4-21
n.d.
4-23
9-21
14-23
9-26
n.d.
2-25
2-22
1-28
n.d.
1-31
2-19
8-20
1-16 | | Sample
Number | Weight
(g) | Classification W | eathering | Fracturing | % Fa | % Fs | |--|--
---|---|--|---|--| | ALHA78149 + ALHA78162 + ALHA78180 + ALHA78188 + ALHA78188 ALHA78235 + ALHA78238 + ALHA78239 + ALHA78243 ALHA79001 ALHA81025 ALHA81031 ALHA81031 ALHA81060 ALHA81065 ALHA81065 ALHA81066 ALHA81065 ALHA81065 ALHA81121 ALHA81145 ALHA81145 ALHA81121 ALHA81145 ALHA81191 ALHA81191 ALHA81191 ALHA81299 ALHA81299 ALHA81299 ALHA81299 ALHA81299 ALHA81299 ALHA81290 ALHA81250 AL | 23.2
33.2
7.9
19.2
14.4
9.0
16.9
31.3
17.7
18.4
19.6
19.7
18.4
19.7
18.4
19.7
19.4
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19 | L-3 CHONDRITE | ВВВВ СВ В ССВССВССССВВСВСВВВВВСВСВ А/
ВВВВ СВ В ССВССВССССВВСВСВВВВВВВВВВВВВ | B ABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | 18-31
2-30
8-26
2-33
1-34
8-27
2-34
1-39
2-38
1-49
1-43
1-49
1-49
1-49
1-49
1-49
1-49
1-49
1-49 |
3-24
5-29
3-21
3-21
3-31
2-30
2-30
3-31
2-20
5-21
5-22
1-30
4-28
1-30
4-28
1-30
4-28
1-30
6-31
2-24
1-30
6-31
2-24
1-30
6-31
2-24
1-30
6-29
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30
1-30 | | ALHA78015 * | 34.9 | LL(?L)-3 CHONDRITE | | | 8-35 | | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturi | ing % Fa | % Fs | |------------------|---------------|----------------|------------|----------|----------|-------| | ALHA76004 | 52.5 | LL-3 CHONDRITE | Α | Α | 0-34 | 0-53 | | ALHA77278 | 312.9 | LL-3 CHONDRITE | A | Α | 11-29 | 9-21 | | ALHA78138 + | 10.8 | LL-3 CHONDRITE | В | | 0-35 | | | ALHA79003 | 5.1 | LL-3 CHONDRITE | В | В | 10-38 | 5-26 | | ALHA81251 | 158.0 | LL-3 CHONDRITE | B/C | В | 1-29 | 2-28 | | ALH 84086 | 234.0 | LL-3 CHONDRITE | A/B | Α | 25-29 | 17-26 | | ALH 84126 | 41.2 | LL-3 CHONDRITE | B | В | 7-31 | 3-24 | | TIL 82408 | 80.1 | LL-3 CHONDRITE | В | A/B | 1-29 | 2-21 | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing % F | a % Fs | |---|---|---|---|--|--| | ALHA77004
ALHA77009
ALHA77010
ALHA77010
ALHA77190
ALHA77191
ALHA77192
ALHA77223
ALHA77223
ALHA77224
ALHA77225
ALHA77226
ALHA77233
ALHA77233
ALHA77233
ALHA78051
ALHA78051
ALHA78051
ALHA78057
ALHA78057
ALHA78051
ALHA78057
ALHA78057
ALHA78051
ALHA78051
ALHA78053
ALHA78053
ALHA78054
ALHA78194
ALHA78194
ALHA78195
ALHA78193
ALHA781040
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80121
ALHA80122
ALHA80123
ALHA80121
ALHA80123
ALHA80124
ALHA80124
ALHA80125
ALHA80125
ALHA80125
ALHA80126
ALHA80126
ALHA80126
ALHA80126
ALHA80127
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128
ALHA80128 | 2230.0
235.5
295.8
12.3
387.1
642.2
845.3
1733.0
229.2
125.4
207.9
786.9
5878.0
15323.0
6494.3
4087.0
119.5
245.8
16.6
44.3
458.3
16.6
433.6
29.4
13.3
11.2
68.1
37.6
108.2
39.1
138.2
39.1
138.2
19.8
912.5
728.8
106.0
386.8
90.2
16.6
81.6
81.6
81.6
81.6
81.6
81.6
81.6 | H-4 CHONDRITE | СССАСССССАСССССВСВВ С СВ ВВВВВВВВВВВВВВ | C 17- A 18 A 18 18. C 17- B/C 16- C 16- C 17 A 18. C 17 B 18. C 17 B 18. C 17 C 18 C 17 B 18. C 17 C 18 | 16
15-18
16.3
19
15-22
18 14-16
18 15-21
14
13-15
0 15.3
15-23
17
16
16
16
15
21 15-17
19 13-16
12-16
2
2
15-18
16
16
15-20
4
0
2 | | Sample
Number | Weight
(g) | Classification | Weathering | Fracturing | g % Fa | % Fs | |---
---|--|--|---|--|---| | ALHA81057 ALHA81058 ALHA81073 ALHA81074 ALHA81092 ALHA81097 ALHA81097 ALHA81104 ALHA81109 ALHA81117 ALHA81117 ALHA81117 ALHA81117 ALHA81149 ALHA81147 ALHA81147 ALHA81231 ALHA81231 ALHA81231 ALHA81231 ALHA81231 ALHA81231 ALHA81231 ALHA81234 ALHA81231 ALHA81236 ALH 82128 ALH 82128 ALH 82133 ALH 82136 ALH 84004 ALH 84059 ALH 84004 ALH 84059 ALH 84004 ALH 84059 ALH 84004 ALH 84004 ALH 84007 ALH 84004 ALH 84007 ALH 84004 ALH 84007 ALH 84004 ALH 84007 84006 | 8.4
66.2
23.7
3.3
8.0
15.6
58.8
79.9
183.8
92.7
1.7
8.8
11.7
8.8
11.3
16.0
9.5
3.8
11.5
0.6
139.9
15.2
19.7
26.8
27.1
1.5
0.9
15.2
19.7
26.9
331.8
1824.1
325.5
1238.3
542.7
624.4
149.0
160.9
113.8
8483.0
166.9
113.8
166.9
113.8
166.9
113.8
166.9
166.9
169.9
17.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
189.9
1 | H-4 CHONDRITE H- | BCBBBBBCCBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | ACAABACACBABBAABBBAABBAABBAAABBBBAABBAA | 19
18
19
19
19
19
19
18
19
18
19
19
19
19
19
19
19
18
18
18
18
18
18
18
18
18
18
18
18
18 |
13-21
15
16
8-18
16
17
16
17
16
17
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
17
16
16
16
17
16
16
16
16
16
17
16
16
16
16
16
16
16
16
16
16
16
16
16 | | EET 83221 | 313.9 | H-4,6 CHONDRITE | С | С | 17 | 15 | | Weight
(g) | Classification | Weathering | Fractur | ing % Fa | % Fs | |---|---|---|---|---|---| | 2473.0
650.4
164.1
10.0
194.5
107.4
16.7
1568.6
12.6
4.2
54.9
67.7
8.7
129.8
44.3
7.3
321.6 | L-4 CHONDRITE | C
B
B/C
B/C
A/B
B
B
A/B
B
A/B
B
B/C | B B B A B A A A A A A | 22-25
18-27
23-25
23
25
24
24
23-28
24
23
22
25
23
22
25
23 | 18-29
13-19
19-24
13-25
21
20
20-32
21
20
19
5-21
18-22
11-22
20
19
20 | | 220.8
179.5
892.1 | L-4 CHONDRITE
L-4 CHONDRITE
L-4 CHONDRITE | B/C
A/B
B | A
A
A | 23
24
24 | 20
21
15-23 | | | (g) 2473.0 650.4 164.1 10.0 194.5 107.4 16.7 1568.6 12.6 4.2 54.9 67.7 8.7 129.8 44.3 7.3 321.6 152.0 220.8 179.5 | 2473.0 L-4 CHONDRITE 650.4 L-4 CHONDRITE 164.1 L-4 CHONDRITE 10.0 L-4 CHONDRITE 194.5 L-4 CHONDRITE 107.4 L-4 CHONDRITE 16.7 L-4 CHONDRITE 16.7 L-4 CHONDRITE 12.6 L-4 CHONDRITE 12.6 L-4 CHONDRITE 4.2 L-4 CHONDRITE 54.9 L-4 CHONDRITE 67.7 L-4 CHONDRITE 67.7 L-4 CHONDRITE 129.8 L-4 CHONDRITE 129.8 L-4 CHONDRITE 14.3 L-4 CHONDRITE 179.5 L-4 CHONDRITE 179.5 L-4 CHONDRITE 179.5 L-4 CHONDRITE 179.5 L-4 CHONDRITE | (g) Classification Weathering 2473.0 L-4 CHONDRITE C 650.4 L-4 CHONDRITE B 164.1 L-4 CHONDRITE B/C 10.0 L-4 CHONDRITE B/C 194.5 L-4 CHONDRITE B 197.4 L-4 CHONDRITE B 16.7 L-4 CHONDRITE B 16.7 L-4 CHONDRITE B 12.6 L-4 CHONDRITE B 4.2 L-4 CHONDRITE B 4.2 L-4 CHONDRITE B 54.9 L-4 CHONDRITE B 67.7 L-4 CHONDRITE B 8.7 L-4 CHONDRITE B 8.7 L-4 CHONDRITE B 44.3 L-4 CHONDRITE B 7.3 L-4 CHONDRITE B 220.8 L-4 CHONDRITE B 220.8 L-4 CHONDRITE B 892.1 L-4 CHONDRITE B | (g) Classification Weathering Fracture 2473.0 L-4 CHONDRITE C B 650.4 L-4 CHONDRITE B B 164.1 L-4 CHONDRITE B/C B 10.0 L-4 CHONDRITE B/C A 10.0 L-4 CHONDRITE B/C A 107.4 L-4 CHONDRITE B B 16.7 L-4 CHONDRITE B A 1568.6 L-4 CHONDRITE B A 12.6 L-4 CHONDRITE B A 4.2 L-4 CHONDRITE B A 54.9 L-4 CHONDRITE B A 67.7 L-4 CHONDRITE B A 8.7 L-4 CHONDRITE B A 129.8 L-4 CHONDRITE B B 44.3 L-4 CHONDRITE B B 321.6 L-4 CHONDRITE B B 152.0 | (g) Classification Weathering Fracturing % Fa 2473.0 L-4 CHONDRITE C B 22-25 650.4 L-4 CHONDRITE B B 18-27 164.1 L-4 CHONDRITE B/C B 23-25 10.0 L-4 CHONDRITE B/C A 25 107.4 L-4 CHONDRITE B B 24 16.7 L-4 CHONDRITE B B 24 1568.6 L-4 CHONDRITE B B 24 4.2 L-4 CHONDRITE B B 24 4.2 L-4 CHONDRITE B A 23 67.7 L-4 CHONDRITE B A 22 8.7 L-4 CHONDRITE B A 23 129.8 L-4 CHONDRITE B B 23 44.3 L-4 CHONDRITE B B 23 7.3 L-4 CHONDRITE B B 23 321.6 L-4 CHONDRITE B B 23 152.0 L-4 CHONDRITE B A | [@] Classified by S.G. McKinley and K. Keil. * Classified by S.J.B. Reed and S.O. Agrell. + Classified by C.B. Moore. % Classified by M. Rhodes and S. Haggerty. | | | | • . • | |--|--|--|-------| |